首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.  相似文献   

2.
The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR field. Here, we describe a novel protocol for incorporating unnatural amino acids into fully deuterated proteins using glucose-based media (which are relevant to the production, for example, of amino acid-specific methyl-labeled proteins used in the study of large molecular weight systems). The method consists of pre-induction of the pEVOL plasmid encoding the tRNA/aminoacyl-tRNA synthetase pair in a rich, H2O-based medium prior to exchanging the culture into a D2O-based medium. Our protocol results in high level of isotopic incorporation (~95%) and retains the high expression level of the target protein observed in Luria–Bertani medium.  相似文献   

3.

Genetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.

  相似文献   

4.
Incorporation of unnatural amino acids with unique chemical functionalities has proven to be a valuable tool for expansion of the functional repertoire and properties of proteins as well as for structure-function analysis. Incorporation of alpha-hydroxy acids (primary amino group is substituted with hydroxyl) leads to the synthesis of proteins with peptide bonds being substituted by ester bonds. Practical application of this modification is limited by the necessity to prepare corresponding acylated tRNA by chemical synthesis. We investigated the possibility of enzymatic incorporation of alpha-hydroxy acid and acid analogues (lacking amino group) of amino acids into tRNA using aminoacyl-tRNA synthetases (aaRSs). We studied direct acylation of tRNAs by alpha-hydroxy acid and acid analogues of amino acids and corresponding chemically synthesized analogues of aminoacyl-adenylates. Using adenylate analogues we were able to enzymatically acylate tRNA with amino acid analogues which were otherwise completely inactive in direct aminoacylation reaction, thus bypassing the natural mechanisms ensuring the selectivity of tRNA aminoacylation. Our results are the first demonstration that the use of synthetic aminoacyl-adenylates as substrates in tRNA aminoacylation reaction may provide a way for incorporation of unnatural amino acids into tRNA, and consequently into proteins.  相似文献   

5.
Many biophysical techniques that are available to study the structure, function and dynamics of cellular constituents require modification of the target molecules. Site-specific labelling of a protein is of particular interest for fluorescence-based single-molecule measurements including single-molecule FRET or super-resolution microscopy. The labelling procedure should be highly specific but minimally invasive to preserve sensitive biomolecules. The modern molecular engineering toolkit provides elegant solutions to achieve the site-specific modification of a protein of interest often necessitating the incorporation of an unnatural amino acid to introduce a unique reactive moiety. The Amber suppression strategy allows the site-specific incorporation of unnatural amino acids into a protein of interest. Recently, this approach has been transferred to the mammalian expression system. Here, we demonstrate how the combination of unnatural amino acid incorporation paired with current bioorthogonal labelling strategies allow the site-specific engineering of fluorescent dyes into proteins produced in the cellular environment of a human cell. We describe in detail which parameters are important to ensure efficient incorporation of unnatural amino acids into a target protein in human expression systems. We furthermore outline purification and bioorthogonal labelling strategies that allow fast protein preparation and labelling of the modified protein. This way, the complete eukaryotic proteome becomes available for single-molecule fluorescence assays.  相似文献   

6.
The molecular chaperone GroEL is required for bacterial growth under all conditions, mediating folding assistance, via its central cavity, to a diverse set of cytosolic proteins; yet the subcellular localization of GroEL remains unresolved. An earlier study, using antibody probing of fixed Escherichia coli cells, indicated colocalization with the cell division protein FtsZ at the cleavage furrow, while a second E. coli study of fixed cells indicated more even distribution throughout the cytoplasm. Here, for the first time, we have examined the spatial distribution of GroEL in living cells using incorporation of a fluorescent unnatural amino acid into the chaperone. Fluorescence microscopy indicated that GroEL is diffusely distributed, both under normal and stress conditions. Importantly, the present procedure uses a small, fluorescent unnatural amino acid to visualize GroEL in vivo, avoiding the steric demands of a fluorescent protein fusion, which compromises proper GroEL assembly. Further, this unnatural amino acid incorporation avoids artifacts that can occur with fixation and antibody staining.  相似文献   

7.
Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as interactions with their partners. Formerly considered as unfeasible, the first structure in solution by nuclear magnetic resonance (NMR) of a paramagnetic protein was obtained in 1994. Methodological and instrumental advancements pursued over the last decade are such that NMR structure of paramagnetic proteins may be now routinely obtained. We focus here on approaches and problems related to the structure determination of paramagnetic proteins in solution through NMR spectroscopy. After a survey of the background theory, we show how the effects produced by the presence of a paramagnetic metal ion on the NMR parameters, which are in many cases deleterious for the detection of NMR spectra, can be overcome and turned into an additional source of structural restraints. We also briefly address features and perspectives given by the use of 13C-detected protonless NMR spectroscopy for proteins in solution. The structural information obtained through the exploitation of a paramagnetic center are discussed for some Cu2+ -binding proteins and for Ca2+ -binding proteins, where the replacement of a diamagnetic metal ion with suitable paramagnetic metal ions suggests novel approaches to the structural characterization of proteins containing diamagnetic and NMR-silent metal ions.  相似文献   

8.
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide-protein and peptide-nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.  相似文献   

9.
无细胞体系非天然蛋白质合成研究进展   总被引:2,自引:0,他引:2  
高伟  卜宁  卢元 《生物工程学报》2018,34(9):1371-1385
无细胞非天然蛋白质合成作为蛋白质研究的新兴手段,已成功用于表征蛋白质分子间、蛋白质与核酸分子间相互作用等基础科学研究及医药蛋白、蛋白质材料等工业生产领域。无细胞非天然蛋白质合成系统不需维持细胞的生长,无细胞膜阻碍,可依据研究目的添加基因元件或化学物质从而增强工程设计和过程调控的自由性;也可赋予蛋白质新的特性、结构及功能,如可实现蛋白翻译后修饰、反应手柄引入、生物物理探针及多聚蛋白质合成等。文中系统地综述了目前应用于无细胞蛋白质合成系统中的非天然氨基酸嵌入方法,包括全局抑制及基于正交翻译体系的终止密码子抑制、移码抑制、有义密码子再分配和非天然碱基等方法的研究进展,及非天然氨基酸在蛋白质修饰、生物物理探针、酶工程、蛋白质材料以及医药蛋白质生产等领域的应用进展,并分析了该体系的发展前景及广泛工业化应用的机遇与挑战。  相似文献   

10.
Through an exhaustive search for Escherichia coli aminoacyl-tRNA synthetase(s) responsible for the misacylation of yeast suppressor tRNA(Tyr), E. coli lysyl-tRNA synthetase was found to have a weak activity to aminoacylate yeast amber suppressor tRNA(Tyr) (CUA) with L-lysine. Since our protein-synthesizing system for site-specific incorporation of unnatural amino acids into proteins is based on the use of yeast suppressor tRNA(Tyr)/tyrosyl-tRNA synthetase (TyrRS) pair as the "carrier" of unusual amino acid in E. coli translation system, this misacylation must be repressed as low as possible. We have succeeded in effectively repressing the misacylation by changing several nucleotides in this tRNA by genetic engineering. This "optimized" tRNA together with our mutant TyrRS should serve as an efficient and faithful tool for site-specific incorporation of unnatural amino acids into proteins in a protein-synthesizing system in vitro or in vivo.  相似文献   

11.
Lanthanoid pseudo-contact shift (PCS) provides long-range structural information between a paramagnetic tag and protein nuclei. However, for proteins with native cysteines, site-specific attachment may only utilize functional groups orthogonal to sulfhydryl chemistry. Here we report two lanthanoid probes, DTTA-C3-yne and DTTA-C4-yne, which can be conjugated to an unnatural amino acid pAzF in the target protein via azide-alkyne cycloaddition. Demonstrated with ubiquitin and cysteine-containing enzyme EIIB, we show that large PCSs of distinct profiles can be generated for each tag/lanthanoid combination. The DTTA-based lanthanoid tags are associated with large magnetic susceptibility tensors owing to the rigidity of the tags. In particular, introduction of the DTTA-C3 tag affords intermolecular PCSs and enables structural characterization of a transient protein complex between ubiquitin and a UBA domain. Together, we have expanded the repertoire of paramagnetic tags and the applicability of paramagnetic NMR.  相似文献   

12.
An orthogonal tRNA/aminoacyl-tRNA synthetase pair was evolved that makes possible the site-specific incorporation of an unnatural amino acid bearing a beta-diketone side chain into proteins in Escherichia coli with high translational efficiency and fidelity. Proteins containing this unnatural amino acid can be efficiently and selectively modified with hydroxylamine derivatives of fluorophores and other biophysical probes.  相似文献   

13.
Summary Gamma-carboxyglutamic acid is an amino acid with a dicarboxylic acid side chain. This amino acid, with unique metal binding properties, confers metal binding character to the proteins into which it is incorporated. This amino acid has been discovered in blood coagulation proteins (prothrombin, Factor X, Factor IX, and Factor VII), plasma proteins of unknown function (Protein C, Protein S, and Protein Z), and proteins from calcified tissue (osteocalcin and bone-Gla protein). It has also been observed in renal calculi, atherosclerotic plaque, and the egg chorioallantoic membrane, among other tissues. Gamma-carboxyglutamic acid is synthesized by the post-translational modification of glutamic acid residues. This reaction, catalyzed by a hepatic carboxylase, requires reduced vitamin K, oxygen, and carbon dioxide. The function of -carboxyglutamic acid is uncertain. In prothrombin y-carboxyglutamic acid residues bound to metal ions participate as an intramolecular non-covalent bridge to maintain protein conformation. Additionally, these amino acids participate in the calcium-dependent molecular assembly of proteins on membrane surfaces through intermolecular bridges involving y-carboxyglutamic acid and metal ions.  相似文献   

14.
Uptake and incorporation into proteins of an externally supplied amino acid were followed during early meiosis in yeast. Under conditions optimal for development, an insufficient permeability of the cell leads to an incorporation pattern which reflects the changes in the activity of the amino acid transporting system rather than those in protein synthesis. A more correct picture of protein synthesis during early meiosis is obtained by the use of a mutant with an enhanced level of amino acid uptake.Abbreviation SPM Sporulation medium  相似文献   

15.
The non-canonical amino acid (ncAA) analogue of methionine (Met), β-cyclopropylalanine (Cpa), was successfully incorporated into recombinant proteins expressed in Escherichia coli in a residue-specific manner. Proteins substituted in this way are congeners because they derive from the same gene sequence as the parent protein but contain a fraction of ncAAs. We have expressed congeners using parent and mutant gene sequences of various proteins (lipase, annexin A5, enhanced green fluorescent protein, and barstar) and found that Cpa incorporation is highly dependent on the protein sequence composition. These results indicate that the global amino acid composition of proteins might be a crucial parameter that influences the outcome of unnatural translation. In addition, we could also demonstrate that the chemical nature of the second residue could be essential for successful ncAA incorporation.  相似文献   

16.
In this study, we investigated the efficiencies by which the pET and pQE expression systems produce unnatural recombinant proteins by residue-specific incorporation of unnatural amino acids, a method through which it was found that type of gene expression system tremendously influences the production yield of unnatural proteins in Escherichia coli. Green fluorescent protein (GFP) and a single-chain Fv antibody against c-Met were utilized as model recombinant proteins while L-homopropargylglycine (Hpg), a methionine analogue that incorporates into the methionine residues of a recombinant protein, was used as model unnatural amino acid. The pET system produced an almost negligible amount of Hpg-incorporated unnatural protein compared to the amount of methionine-incorporated natural protein. However, comparable amounts of unnatural and natural protein were produced by the pQE expression system. The amount of unnatural GFP protein produced through pET expression was not increased despite the over-expression of methionyl tRNA synthetase, which can enhance the activation rate of methionyl-tRNA with a methionine analogue. Incorporation of Hpg decreased the productivity of active GFP by approximately 2.5 fold, possibly caused by the inefficient folding of Hpg-incorporated GFP. Conversely, the productivity of functional anti-c-Met sc-Fv was not influenced by incorporation of Hpg. We confirmed through LC-MS and LCMS/MS that Hpg was incorporated into the methionine residues of the recombinant proteins produced by the pQE expression system. The first two authors equally contributed to this work.  相似文献   

17.
The incorporation of amino acids into the proteins of rat skin after storage in a buffer medium greatly depends on the animal's age, and on storage time.At —3 °C protein synthesizing activity is primarily impaired, accompanied by cell membrane damage, while DNA metabolism appears remarkably immune to preservation injury. The major injury to protein synthesis occurs during the first days and even hours of storage, followed by a longer period of storage where protein metabolism is reduced to a low level of activity. Addition of a mixture of amino acids to the medium protects and stimulates the subsequently tested amino acid incorporation into the proteins of rat skin.  相似文献   

18.
In vivo incorporation of unnatural amino acids by amber codon suppression is limited by release factor-1-mediated peptide chain termination. Orthogonal ribosome-mRNA pairs function in parallel with, but independent of, natural ribosomes and mRNAs. Here we show that an evolved orthogonal ribosome (ribo-X) improves tRNA(CUA)-dependent decoding of amber codons placed in orthogonal mRNA. By combining ribo-X, orthogonal mRNAs and orthogonal aminoacyl-tRNA synthetase/tRNA pairs in Escherichia coli, we increase the efficiency of site-specific unnatural amino acid incorporation from approximately 20% to >60% on a single amber codon and from <1% to >20% on two amber codons. We hypothesize that these increases result from a decreased functional interaction of the orthogonal ribosome with release factor-1. This technology should minimize the functional and phenotypic effects of truncated proteins in experiments that use unnatural amino acid incorporation to probe protein function in vivo.  相似文献   

19.
Eisenhauer BM  Hecht SM 《Biochemistry》2002,41(38):11472-11478
By employing a general biosynthetic method for the elaboration of proteins containing unnatural amino acid analogues, we incorporated (aminooxy)acetic acid into positions 10 and 27 of Escherichia coli dihydrofolate reductase. Introduction of the modified amino acid into DHFR was accomplished in an in vitro protein biosynthesizing system by readthrough of a nonsense (UAG) codon with a suppressor tRNA that had been activated with (aminooxy)acetic acid. Incorporation of the amino acid proceeded with reasonable efficiency at codon position 10 but less well at position 27. (Aminooxy)acetic acid was also incorporated into position 72 of DNA polymerase beta. Peptides containing (aminooxy)acetic acid have been shown to adopt a preferred conformation involving an eight-membered ring that resembles a gamma-turn. Accordingly, the present study may facilitate the elaboration of proteins containing conformationally biased peptidomimetic motifs at predetermined sites. The present results further extend the examples of ribosomally mediated formation of peptide bond analogues of altered connectivity and provide a conformationally biased linkage at a predetermined site. It has also been shown that the elaborated protein can be cleaved chemically at the site containing the modified amino acid.  相似文献   

20.
A procedure is described for the synthetic incorporation into membrane proteins of the non-natural amino acid TOAC (2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic acid), which is coupled rigidly to the alpha-carbon, providing direct detection of peptide backbone dynamics by electron paramagnetic resonance (EPR). Also included is a protocol for the functional reconstitution of the spin-labeled protein in lipid vesicles. This protocol can be completed in 17 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号