首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium induces a senescence response in cells through induction of ataxia–telangiectasia mutated (ATM) and reactive oxygen species (ROS). Although a role of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in DNA double-strand break repair is established, it is unclear how these proteins function in response to selenium-induced oxidative stress and senescence induction. In this study, we demonstrated that pretreating normal human diploid fibroblasts with DNA-PK kinase inhibitor NU 7026 suppressed selenium-induced senescence response. Selenium treatment induced phosphorylation of DNA-PKcs on Thr-2647 and Ser-2056, the extent of which was decreased in the presence of ATM kinase inhibitor KU 55933 or the antioxidants N-acetylcysteine or 2,2,6,6-tetramethylpiperidine-1-oxyl. In contrast, the selenium-induced phosphorylation of ATM on Ser-1981 was not affected by NU 7026. Cells deficient in DNA-PKcs or pretreated with NU 7026 or N-acetylcysteine were defective in selenite-induced ROS formation. Taken together, these results indicate a distinct role of DNA-PKcs, in which this kinase can respond to and feed forward selenium-induced ROS formation and is placed downstream of ATM in the resultant senescence response.  相似文献   

2.
Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.  相似文献   

3.
Incorporation of 32P from gamma-labeled ATP into a number of polypeptides in HeLa whole cell and nuclear extracts was dependent on added double-stranded DNA or poly(dI-dC), but not denatured or supercoiled DNA. DNA-dependent phosphorylation of a high Mr endogenous substrate could be reconstituted from the precipitate formed after incubation of whole cell extracts with DNA. Fractionation of extracts by phosphocellulose or DEAE-Sephacel chromatography yielded preparations that phosphorylated casein as well as endogenous polypeptides in a DNA-dependent manner. These results are consistent with the existence of a novel protein kinase in HeLa cells that is highly dependent upon the presence of double-stranded DNA for efficient phosphorylation of a variety of substrates.  相似文献   

4.
We have examined whether signal-mediated nucleocytoplasmic transport can be regulated by phosphorylation of the nuclear transport machinery. Using digitonin-permeabilized cell assays to measure nuclear import and export, we found that the phosphatase inhibitors okadaic acid and microcystin inhibit transport mediated by the import receptors importin beta and transportin, but not by the export receptor CRM1. Several lines of evidence, including the finding that transport inhibition is partially reversed by the broad specificity protein kinase inhibitor staurosporine, indicate that transport inhibition is due to elevated phosphorylation of a component of the nuclear transport machinery. The kinases and phosphatases involved in this regulation are present in the permeabilized cells. A phosphorylation-sensitive component of the nuclear transport machinery also is present in permeabilized cells and is most likely a component of the nuclear pore complex. Substrate binding by the importin alpha.beta complex and the association of the complex with the nucleoporins Nup358/RanBP2 and Nup153 are not affected by phosphatase inhibitors, suggesting that transport inhibition by protein phosphorylation does not involve these steps. These results suggest that cells have mechanisms to negatively regulate entire nuclear transport pathways, thus providing a means to globally control cellular activity through effects on nucleocytoplasmic trafficking.  相似文献   

5.
We studied the effect of pre-incubation with NU7441, a specific inhibitor of DNA-dependent protein kinase (DNA-PK), on molecular mechanisms triggered by ionizing radiation (IR). The experimental design involved four groups of human T-lymphocyte leukaemic MOLT-4 cells: control, NU7441-treated (1 μM), IR-treated (1 Gy), and combination of NU7441 and IR. We used flow cytometry for apoptosis assessment, Western blotting and ELISA for detection of proteins involved in DNA repair signalling and epifluorescence microscopy for detection of IR-induced phosphorylation of histone H2A.X. We did not observe any major changes in the amount of DNA-PK subunits Ku70/80 caused by the combination of NU7441 and radiation. Their combination led to an increased phosphorylation of H2A.X, a hallmark of DNA damage. However, it did not prevent up-regulation of neither p53 (and its phosphorylation at Ser 15 and 392) nor p21. We observed a decrease in the levels of anti-apoptotic Mcl-1, cdc25A phosphatase, cleavage of PARP and a significant increase in apoptosis in the group treated with combination. In conclusion, the combination of NU7441 with IR caused increased phosphorylation of H2A.X early after irradiation and subsequent induction of apoptosis. It was efficient in MOLT-4 cells in 10× lower concentration than the inhibitor NU7026. NU7441 proved as a potent radio-sensitizing agent, and it might provide a platform for development of new radio-sensitizers in radiotherapy.  相似文献   

6.
7.
Calreticulin Is a receptor for nuclear export   总被引:13,自引:0,他引:13  
  相似文献   

8.
The regulation of PBC protein function through subcellular distribution is a crucial evolutionarily conserved mechanism for appendage patterning. We investigated the processes controlling PBX1 nuclear export. Here we show that in the absence of MEINOX proteins nuclear export is not a default pathway for PBX1 subcellular localization. In different cell backgrounds, PBX1 can be imported or exported from the nucleus independently of its capacity to interact with MEINOX proteins. The cell context-specific balance between nuclear export and import of PBX1 is controlled by the PBC-B domain, which contains several conserved serine residues corresponding to phosphorylation sites for Ser/Thr kinases. PBX1 subcellular localization correlates with the phosphorylation state of these residues whose dephosphorylation induces nuclear export. Protein kinase A (PKA) specifically phosphorylates PBX1 at these serines, and stimulation of endogenous PKA activity in vivo blocks PBX1 nuclear export in distal limb mesenchymal cells. Our results reveal a novel mechanism for the control of PBX1 nuclear export in addition to the absence of MEINOX protein, which involves the inhibition of PKA-mediated phosphorylation at specific sites within the PBC-B domain.  相似文献   

9.
Human inositol phosphate multikinase (IPMK) is a multifunctional protein in cellular signal transduction, namely, a multispecific inositol phosphate kinase, phosphatidylinositol 3-kinase, and a scaffold within the mTOR-raptor complex. To fulfill these nuclear and cytoplasmic functions, intracellular targeting of IPMK needs to be regulated. We show here that IPMK, which has been considered to be a preferentially nuclear protein, is a nucleocytoplasmic shuttling protein, whose nuclear export is mediated by classical nuclear export receptor CRM1. We identified a functional nuclear export signal (NES) additionally to its previously described nuclear import signal (NLS). Furthermore, we describe a mechanism by which the activity of the IPMK-NLS is controlled. Protein kinase CK2 binds endogenous IPMK and phosphorylates it at serine 284. Interestingly, this phosphorylation can decrease nuclear localization of IPMK cell type specifically. A controlled nuclear import of IPMK may direct its actions either toward nuclear inositol phosphate (InsPx) metabolism or cytoplasmic actions on InsPx, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P?], as well as mTOR-raptor.  相似文献   

10.
We have used digitonin-permeabilized cells to examine in vitro nuclear export of glucocorticoid receptors (GRs). In situ biochemical extractions in this system revealed a distinct subnuclear compartment, which collects GRs that have been released from chromatin and serves as a nuclear export staging area. Unliganded nuclear GRs within this compartment are not restricted in their subnuclear trafficking as they have the capacity to recycle to chromatin upon rebinding hormone. Thus, GRs that release from chromatin do not require transit through the cytoplasm to regain functionality. In addition, chromatin-released receptors export from nuclei of permeabilized cells in an ATP- and cytosol-independent process that is stimulated by sodium molybdate, other group VI-A transition metal oxyanions, and some tyrosine phosphatase inhibitors. The stimulation of in vitro nuclear export by these compounds is not unique to GR, but is restricted to other proteins such as the 70- and 90-kD heat shock proteins, hsp70 and hsp90, respectively, and heterogeneous nuclear RNP (hnRNP) A1. Under analogous conditions, the 56-kD heat shock protein, hsp56, and hnRNP C do not export from nuclei of permeabilized cells. If tyrosine kinase inhibitors genistein and tyrphostin AG126 are included to prevent increased tyrosine phosphorylation, in vitro nuclear export of GR is inhibited. Thus, our results are consistent with the involvement of a phosphotyrosine system in the general regulation of nuclear protein export, even for proteins such as GR and hnRNP A1 that use distinct nuclear export pathways.  相似文献   

11.
12.
Phosphorylation of the androgen receptor was investigated in the absence of hormone as well as during and after transformation of the receptor to the tight nuclear binding form. Human prostate tumor cells (LNCaP) were labeled for 4 h with [32P]orthophosphate in the presence or absence of steroid. Subsequently, androgen receptors were immunoprecipitated either from total cell lysates or from nuclear extracts using a specific monoclonal antibody. The immunoprecipitated receptor preparations were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, using a polyclonal antiserum, and autoradiography. It was observed that the androgen receptor is already phosphorylated in the absence of hormone, but undergoes a hormone-induced additional phosphorylation. After administration of 10 nM R1881, a 1.8-fold increase in phosphorylation over nonstimulated control cells was reached. Moreover, the amount of nuclear extractable androgen receptor was increased; the acquisition of tight nuclear binding capacity was accompanied by hormone-induced receptor phosphorylation.  相似文献   

13.
Soluble factors are required to mediate nuclear export of protein and RNA through the nuclear pore complex (NPC). These soluble factors include receptors that bind directly to the transport substrate and regulators that determine the assembly state of receptor-substrate complexes. We recently reported the identification of NXT1, an NTF2-related export factor that stimulates nuclear protein export in permeabilized cells and undergoes nucleocytoplasmic shuttling in vivo (Black, B.E., L. Lévesque, J.M. Holaska, T.C. Wood, and B.M. Paschal. 1999. Mol. Cell. Biol. 19:8616-8624). Here, we describe the molecular characterization of NXT1 in the context of the Crm1-dependent export pathway. We find that NXT1 binds directly to Crm1, and that the interaction is sensitive to the presence of Ran-GTP. Moreover, mutations in NXT1 that reduce binding to Crm1 inhibit the activity of NXT1 in nuclear export assays. We show that recombinant Crm1 and Ran are sufficient to reconstitute nuclear translocation of a Rev reporter protein from the nucleolus to an antibody accessible site on the cytoplasmic side of the NPC. Further progress on the export pathway, including the terminal step of Crm1 and Rev reporter protein release, requires NXT1. We propose that NXT1 engages with the export complex in the nucleoplasm, and that it facilitates delivery of the export complex to a site on the cytoplasmic side of NPC where the receptor and substrate are released into the cytoplasm.  相似文献   

14.
15.
16.
DNA-dependent protein kinase (DNA-PK) is a key non-homologous-end-joining (NHEJ) nuclear serine/threonine protein kinase involved in various DNA metabolic and damage signaling pathways contributing to the maintenance of genomic stability and prevention of cancer. To examine the role of DNA-PK in processing of non-DSB clustered DNA damage, we have used three models of DNA-PK deficiency, i.e., chemical inactivation of its kinase activity by the novel inhibitors IC86621 and NU7026, knockdown and complete absence of the protein in human breast cancer (MCF-7) and glioblastoma cell lines (MO59-J/K). A compromised DNA-PK repair pathway led to the accumulation of clustered DNA lesions induced by γ-rays. Tumor cells lacking protein expression or with inhibited kinase activity showed a marked decrease in their ability to process oxidatively induced non-DSB clustered DNA lesions measured using a modified version of pulsed-field gel electrophoresis or single-cell gel electrophoresis (comet assay). In all cases, DNA-PK inactivation led to a higher level of lesion persistence even after 24–72 h of repair. We suggest a model in which DNA-PK deficiency affects the processing of these clusters first by compromising base excision repair and second by the presence of catalytically inactive DNA-PK inhibiting the efficient processing of these lesions owing to the failure of DNA-PK to disassociate from the DNA ends. The information rendered will be important for understanding not only cancer etiology in the presence of an NHEJ deficiency but also cancer treatments based on the induction of oxidative stress and inhibition of cluster repair.  相似文献   

17.
18.
We have previously shown that the dispersion and aggregation of carotenoid droplets in goldfish xanthophores are regulated, respectively, by phosphorylation and dephosphorylation of a carotenoid droplet protein p57. There is a basal level of p57 phosphorylation of p57 in unstimulated cells, which is greatly stimulated by adrenocorticotropic hormone (ACTH) or cyclic adenosine monophosphate (cAMP) acting via cAMP-dependent protein kinase. We have also observed that, in permeabilized xanthophores, pigment dispersion can be induced when cAMP is replaced by fluoride. Since p57 has multiple phosphorylation sites, there is the question of whether all p57 phosphorylation is by cAMP-dependent protein kinase or whether phosphorylation by cAMP-independent protein kinase coupled with inhibition of phosphatase activity by fluoride can replace cAMP-dependent protein kinase and that the ability of fluoride to replace cAMP for pigment dispersion in permeabilized cells is probably due to activation of adenylcyclase. We also show that ACTH causes an approximately threefold increase in the level of cAMP in these cells.  相似文献   

19.
Protein kinase D (PKD)/protein kinase C mu is a serine/threonine protein kinase activated by growth factors, antigen-receptor engagement, and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires protein kinase C (PKC) activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular distribution of PKD was analyzed in live cells by imaging fluorescent protein-tagged PKD and in fixed cells by immunocytochemistry. We found that PKD shuttled between the cytoplasm and the nucleus in both fibroblasts and epithelial cells. Cell stimulation with mitogenic GPCR agonists that activate PKD induced a transient nuclear accumulation of PKD that was prevented by inhibiting PKC activity. The nuclear import of PKD requires its cys2 domain in conjunction with a nuclear import receptor, while its nuclear export requires its pleckstrin homology domain and a competent Crm1-dependent nuclear export pathway. This study thus characterizes the regulated nuclear transport of a signaling molecule in response to mitogenic GPCR agonists and positions PKD as a serine kinase whose kinase activity and intracellular localization is coordinated by PKC.  相似文献   

20.
The androgen receptor was purified from rat ventral prostate. The purified receptor migrated as a single band of mol. wt. 87000 on SDS-polyacrylamide gels, had a kd for R-1881 (17 beta-hydroxy-17 alpha-methyl-estra-4,9,11-trien-3-one) binding as 6 nM, and sedimentation coefficient of 4.5 S. Phosphorylation of the purified receptor was studied by incubating it with [gamma-32P]ATP in the presence of several purified protein kinases including cAMP-dependent protein kinase, and four cAMP-independent protein kinases (which were active towards substrates such as phosvitin and casein). Phosphorylation of the 87000 mol. wt. androgen receptor protein occurred only in the presence of a nuclear cAMP-independent protein kinase (of the N2 type). No auto-phosphorylation of the receptor was detected. The results indicate that the androgen receptor is a phosphoprotein. Further, phosphorylation of the androgen receptor by only a specific nuclear cAMP-independent protein kinase may be important in determining the dynamics of its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号