首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization in the genus Lens by means of embryo culture   总被引:1,自引:0,他引:1  
Summary The cultivated lentil L. culinaris and the wild lentil L. ervoides are reproductively isolated from one another due to their hybrid embryo breakdowns. Using embryo culture, vegetatively normal hybrids were obtained. One specific hybrid, heterozygous for a reciprocal translocation, had about 50% gamete viability and produced aborted and viable embryos in a 11 ratio. In the F2, vegetatively normal and highly fertile plants were selected. With the aid of embryo culture techniques, L. ervoides can be included in the wild gene pool of the cultivated lentil.  相似文献   

2.
Aga E  Bekele E  Bryngelsson T 《Genetica》2005,124(2-3):213-221
Genetic variation of forest coffee trees (Coffea arabica L.) from four regions of Ethiopia was investigated using inter-simple sequence repeat (ISSR) markers. A total of 160 individuals representing 16 populations were sampled. Eleven ISSR primers amplified a total of 123 fragments of which 31 fragments (25%) were polymorphic. Estimate of total gene diversity (H T), and the coefficient of genetic differentiation (G ST) were 0.37 and 0.81, respectively. This indicates that most of the variability is between populations than within populations. The partitioning of genetic variation into within and between populations based on Shannon’s information index also revealed more differentiation between populations (0.80) than within populations (0.20). In the phenogram most of the coffee tree samples were clustered on the basis of their regions of origin but failed to cluster according to their respective populations, which could be attributed to the presence of substantial gene flow between adjacent populations in each region assisted by man in the process of transplantation or by wild animals such as monkeys, which eat the berries and defecate the seeds elsewhere. On the other hand, the inter-regional clustering of some coffee tree samples from Bale and Jimma regions could be due to the transport of coffee seeds across regions and their subsequent planting. Although ISSR markers detected lower polymorphic loci than previously reported results with random amplified polymorphic DNA (RAPD) markers on the same materials, it can be used as an alternative method for molecular characterization of C. arabica populations. The results may provide information to select sites for in situ conservation.  相似文献   

3.
Summary The present study reports that a revised nutrient concentration in the basal medium improved shoot bud induction and subsequent plant regeneration in barley (Hordeum vulgare L. var. BL-2). Cultures were raised from immature embryos on MSB5 medium supplemented with picloram. Concentrations of five nutrients were varied. The effect of these nutrients was investigated on (1) induction, (2) induction and subculture, and (3) induction, subculture and regeneration stages. The basal MSB5 medium was not optimal for each phase of barley culture. Decreased ammonium nitrate, increased potassium dihydrogen phosphate, sodium molybdate, cobalt chloride, and addition of glycine enhanced shoot bud induction and plant regeneration. The different media that were optimal for immature embryo culture were: MSB5 medium supplemented with 20.70 μM picloram, 10.30 mM NH4NO3, 6.25 mM KH2PO4, 2.06 μM Na2MoO4, 0.55 μM CoCl2, and 26.64 μM glycine (for induction); MSB5 medium supplemented with 12.47 μM picloram, 10.30 mM NH4NO3, and 0.55 μM CoCl2 (for subculture); and MSB5 medium supplemented with 0.2 μM picloram and 10.3 mM NH4NO3 (for regeneration). Primary cultures required 6wk (without transfer) for morphogenic callus formation. Callus required 4wk of subculture and another 4wk on regeneration medium for optimal plant regeneration. The revised medium could also promote regeneration of the recalcitrant barley genotype RD-2552. Histological analysis showed that the major pathway of differentiation was through shoot bud formation.  相似文献   

4.
Nitrogen fertilization is a key factor for coffee production but creates a risk of water contamination through nitrate (NO3) leaching in heavily fertilized plantations under high rainfall. The inclusion of fast growing timber trees in these coffee plantations may increase total biomass and reduce nutrient leaching. Potential controls of N loss were measured in an unshaded coffee (Coffea arabica L.) plot and in an adjacent coffee plot shaded with the timber species Eucalyptus deglupta Blume (110 trees ha−1), established on an Acrisol that received 180 kg N ha−1 as ammonium-nitrate and 2,700 mm yr−1 rainfall. Results of the one year study showed that these trees had little effect on the N budget although some N fluxes were modified. Soil N mineralization and nitrification rates in the 0–20 cm soil layer were similar in both systems (≈280 kg N ha−1 yr−1). N export in coffee harvest (2002) was 34 and 25 kg N ha−1 yr−1 in unshaded and shaded coffee, and N accumulation in permanent biomass and litter was 25 and 45 kg N ha−1 yr−1, respectively. The losses in surface runoff (≈0.8 kg mineral N ha−1 yr−1) and N2O emissions (1.9 kg N ha−1 yr−1) were low in both cases. Lysimeters located at 60, 120, and 200 cm depths in shaded coffee, detected average concentrations of 12.9, 6.1 and 1.2 mg NO3-N l−1, respectively. Drainage was slightly reduced in the coffee-timber plantation. NO3leaching at 200 cm depth was about 27 ± 10 and 16 ± 7 kg N ha−1 yr−1 in unshaded and shaded coffee, respectively. In both plots, very low NO3 concentrations in soil solution at 200 cm depth (and in groundwater) were apparently due to NO3 adsorption in the subsoil but the duration of this process is not presently known. In these conventional coffee plantations, fertilization and agroforestry practices must be refined to match plant needs and limit potential NO3 contamination of subsoil and shallow soil water.  相似文献   

5.
The main constraint to the transfer of desired traits into cultivated chickpea from wild Cicer relatives is the presence of post-zygotic barriers which result in abortion of the immature embryo following interspecific hybridisation. Rescue of hybrid embryos in vitro and regeneration of hybrid plantlets could allow chickpea breeders to transfer desirable traits from wild relatives of chickpea. The development of embryo rescue techniques using selfed chickpea and selfed wild relatives is being used as a first step to protocols for wide hybrids. Optical microscopy studies of embryogenesis, in both selfs and hybrids, identified deleterious changes in the fertilised hybrid seed as early as 2–4 days after pollination in some crosses. These observations suggest that the appropriate time to rescue chickpea × C. bijugum hybrids is at the early globular stage of embryogenesis (2–7 days old), which requires the development of a complex tissue culture medium. In contrast hybrids between chickpea × C. pinnatifidum abort later (up to 15–20 days old) at the heart-shaped or torpedo stages, and are easier to rescue in vitro. Genotype also plays a significant role in the ability of immature selfed ovules to germinate in vitro. In this paper we report on the optimisation of␣protocols for rescueing immature embryos using selfed chickpea and its wild relatives in ovule, and subsequently to regenerate plantlets.  相似文献   

6.
The effect of various collection dates and nine different culture media on the formation of ‘embryo-like structures’ (ELS) in cultures derived from explants taken from a 42-year-old Larix decidua tree was studied. The best medium was AFC, a medium low in NH4, NO3 +, Mg2+ and SO42− but high in PO43− compared with the concentration of these elements in the other media. On AFC, ELS production reached a peak with collections made in late summer during the period when needle primordia are being initiated. For the other media, collection date had a lesser effect on ELS initiation.  相似文献   

7.
Mutation of the nuclear gene sid disables chlorophyll degradation during leaf senescence in the pasture grass Festuca pratensis. This study investigated the effect of the mutation on photosynthesis and on leaf and whole plant growth under a range of nitrogen regimes. When plants were cultivated in a static hydroponic system, the chlorophyll content of fourth leaves of the stay-green mutant Bf993 remained virtually unchanged from full expansion to complete senescence, while tissue of the wild-type (cv. Rossa) became completely yellow. The retention of chlorophyll in Bf993 was not associated with maintenance of photosynthetic activity as shown by rates of light-saturated CO2 fixation and apparent quantum efficiency. Higher levels of total N in senescing leaves of Bf993 than in Rossa indicated reduced nitrogen remobilization in the mutant. When using a range of [NH4NO3], dry matter production and tillering Mere lower for Bf993 at all but the highest [NH4NO3, which was supra-optimal for the wild type. In contrast to the static system, where fluctuations in N supply occurred, growth and [NO3?] uptake were similar in mutant and wild type when [NO3?] was continuously maintained by a flowing solution culture system. The results are discussed in relation to the role of N supply and the effect of the stay-green mutation on N recycling.  相似文献   

8.
Summary Growth and morphogenesis of plant tissues under in vitro conditions are largely influenced by the composition of the culture media. In this study, effects of different inorganic nutrients (ZnSO4 and CuSO4) on callus induction and plant regeneration of Eleusine coracana in vitro were examined. Primary callus induction without ZnSO4 resulted in improved shoot formation upon transfer of calluses to normal regeneration medium. CuSO4 increased to 5x the normal concentration in the media for primary seed callus induction and plant regeneration resulted in a 4-fold increase in number of regnnerated shoots. For long-term callus cultures, 2x KNO3 or 4x Fe-EDTA could replace the requirement for α-naphthaleneacetic acid in the regeneration medium, while 60 μM ZnSO4 or 0.5 μM CuSO4 was optimal for plant regeneration from callus cultures.  相似文献   

9.
 Coffee species originating from Africa, in particular the two major cultivated species C. arabica and C. canephora, usually contain caffeine in their beans, whereas almost all Malagasy coffee species are caffeine-free. However, one wild coffee species C. pseudozanguebariae, collected near the coast in south Kenya, is also caffeine-free. Beans of this species contain a specific heteroside diterpene (hereinafter referred to simply as heteroside) and give a bitter coffee beverage. We have investigated the inheritance of the caffeine and heteroside contents in the first and second generations of an interspecific cross between C. pseudozanguebariae and C. liberica var. dewevrei, for which the caffeine content is about 1% dmb (dry matter basis). The caffeine content of F1 hybrids (0.2% dmb) was lower than the parental average (0.47% dmb). Caffeine and heteroside contents appeared to be under polygenic control with a strong genetic effect. Nevertheless, one major gene with two alleles seemed to be involved in the control of both compounds. Absence of caffeine was apparently controlled by one recessive gene. Heteroside content seemed to be controlled by one co-dominant gene, heterozygotes being intermediate between the two different groups of homozygotes. Received: 15 September 1997 / Accepted: 6 October 1997  相似文献   

10.
Burhenne N  Tischner R 《Planta》2000,211(3):440-445
 A method is presented to isolate mutants of Chlorella sorokiniana with defects in NO3 metabolism. Three nitrite-reductase (NIR; E.C.1.7.7.1)-deficient mutants were obtained from 500 pinpoint-colony-forming clones. The final screening was performed using NO3 , NO2 or NH+ 4 as N-source. The mutants isolated absorb NO3 with rates close to those measured for the wild type and they excrete NO2 into the medium. The ratio between NO3 uptake and NO2 excretion was 1:1. The sensitivity of NO3 uptake to NH+ 4 was reduced in the mutant strains as it was in the N-starved wild type of Chlorella. Nitrate reductase (NR; EC 1.6.6.1) expression and NR activity were slightly reduced compared to the wild type due to feedback regulation in the mutant strains. No NIR protein was found in the three mutants. However, NIR activity was obtained (50% of the wild-type) for one mutant strain. The NIR-deficient mutants and the already available NR-deficient mutants will be promising tools for investigations of the nitrate assimilation pathway on the molecular level and for studies searching for signaling of C and N metabolism by inorganic N-compounds. Received: 8 October 1999 / Accepted: 25 January 2000  相似文献   

11.
Efficient vegetative cloning in vitro requires definition of plant growth regulator regimes for each genotype, and therefore formulation of a uniform culture protocol for a genetically heterogeneous wild or uncultivated plant population is often impossible. The likelihood of cloning a wide array of plant genotypes by avoiding the use of plant growth regulator(s) was explored with Moringa oleifera Lamk., Moringa stenopetala (Baker f.) Cufod, and Moringa peregrina Forssk. ex Fiori tree seedlings. Propagation was achieved by multiple shoot regeneration from the cotyledonary node of decapitated seedlings, followed by axillary shoot growth from single node shoot segments and rooting of excised shoots. All steps were accomplished on basal Murashige and Skoog medium without plant growth regulator supplements. The results revealed competence for generation of multiple shoots from cotyledonary node tissue, stimulated by repeated shoot harvest, in seedlings of all three tree species. Tens of plants per seedling were regenerated in about 4 mo from culture initiation. In a given species clone size was seedling-dependent, which presumably stems from genotypic variability among seedlings in regeneration ability in vitro. By this means the laborious search for a plant growth regulator regime suitable for organogenesis induction and adapted per genotype became redundant, and biodiversity of the seed germplasm could be maintained. The approach ideally suits establishment of clones of wild plants of endangered species, like those of the Moringaceae, species with high ability for producing supplementary shoots, and without the need to add plant growth regulators, including the rooting stage.  相似文献   

12.
Rustic coffee plantations are characterised by the use of numerous wild and cultivated tree species for providing shade to the coffee shrubs. This paper analyses the role of these plantations in wild tree conservation through the examination of their patterns of floristic variation in southern Mexico. The studied plantations included a total of 45 plant species, most of which were wild tree species, including both mature forest and pioneer taxa. An extrapolation of the species accumulation curve among stands indicated that the whole system, composed of more than 100 coffee plantations, may harbour as many as 34 species of wild trees. The floristic structure of rustic coffee plantations was highly variable. This variation is a result of a combination of factors such as human management, original stand cover and the asynchrony in development stage of different plantations. This promotes a large -diversity in the system. Thus, although a single plantation may have a limited potential to preserve wild tree species, it is the whole ensemble of floristically heterogeneous plantations which renders this agroforestry system valuable for plant diversity conservation, particularly in a region where native forest vegetation has almost disappeared.  相似文献   

13.
While the conservation impacts of invasive plant species on tropical biodiversity is widely recognised, little is known of the potential for cultivated crops turning invasive in tropical forest regions. In the Western Ghats biodiversity hotspot, India, fragmented rainforests often adjoin coffee plantations. This study in the Anamalai hills assessed the effects of distance from edges and forest structure on the occurrence and abundance of shade-tolerant coffee (Arabica Coffea arabica and Robusta C. canephora) in four fragments (32–200 ha) using replicate line transects laid from the edges into the interiors. The coffee species cultivated in adjoining plantations was more abundant than the other coffee species inside study fragments, showing a clear decline in stem density from edge (0 m) to interior (250 m), suggesting the influence of propagule pressure of adjoining plantations, coupled with edge effects and seed dispersal by animals. Significant positive correlations of coffee density with canopy cover indicate the potential threat of coffee invasion even in closed canopy rainforests. Stem density of Coffea arabica (150–1,825 stems/ha) was higher in more disturbed fragments, whereas Coffea canephora had spread in disturbed and undisturbed sites achieving much higher densities (6.3–11,486 stems/ha). In addition, a negative relationship between C. canephora and native shrub density indicates its potential detrimental effects on native plants.  相似文献   

14.
Helianthus maximiliani is one of the wild Helianthus species with the genes for resistance to many pathogens including Sclerotinia sclerotiorum. Unfortunately, a transfer of disease resistance genes from this species into the cultivated sunflower is limited by its poor crossability with the cultivated sunflower and sterility of interspecific hybrids. To overcome this problem, mesophyll protoplasts of Sclerotinia sclerotiorum-resistant clone of H. maximiliani were electrically fused with etiolated hypocotyl protoplasts of the cultivated sunflower inbred line PH-BC1-91A. Fusion products were embedded in agarose droplets and subjected to different regeneration protocols. Developed microcalluses were released from the agarose and transferred into solid media. Shoot regeneration was achieved by culture of calluses on regeneration medium containing 2.2 mg l−1 BAP and 0.01 mg l−1 NAA after the treatment with a high concentration of 2,4 D for a limited period of time. A morphological and RAPD analysis confirmed a hybrid nature of the regenerated plants.  相似文献   

15.
Summary Thidiazuron (TDZ) is a substituted phenylurea which has been shown to be an efficacious regulator of in vitro morphogenesis of many dicot plant species. However, information regarding the effect of TDZ on in vitro regeneration of monocot species is limited. We investigated the effects of TDZ on in vitro regeneration of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) and found that it promoted shoot regeneration from callus in these two important cereal species. Plant regeneration from calluses derived from immature embryo culture of barley and wheat was observed in regeneration media with a wide range of TDZ concentrations (0.045–45 μM). Shoot regeneration from barley calluses was the highest (38.3% for cv. Golden Promise) at 4.5 μM (1 mg l−1) TDZ, while the optimal TDZ level for wheat regeneration seemed to be 0.9 μM (0.2 mg l−1) (87% for cv. Bob White and 49.4% for cv. Hi Line). Roots developed normally when the regenerated wheat and barley shoots from TDZ-containing media were transferred to the rooting medium. Comparison with other plant growth regulators commonly used in wheat and barley regeneration media suggested that TDZ was among the best for in vitro regeneration of wheat and barley. Both authors contributed equally  相似文献   

16.
Embryo culture of 5–10 mm long embryos of Prunus was investigated. The effects of various media on embryo enlargement, germination and plant formation were compared. Results show that embryos in all genotypes enlarged during stratification on any tested medium. Beneficial embryo enlargement, germination and plant development of peach and nectarine occurred when cultured on WP medium. The embryos of a plum were more responsive to C2d medium for enlargement, germination and plant development. All genotypes germinated well with a large number of embryos growing into plants on WP and C2d media.  相似文献   

17.
The effect of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin was studied in anther culture of oat Avena sativa L., wild oat A. sterilis L. and progeny of crosses between them. A high 2,4-D concentration (5–6 mg l–1) increased embryo production in genotypes of both species and promoted plant regeneration in anther cultures of A. sterilis and A. sativa×A. sterilis progeny, while kinetin caused severe browning. However, a low concentration of kinetin was essential for initiation of regenerable embryos from anther culture of A. sativa cv. Kolbu: one green and one albino plant were produced. In addition, medium containing W14 salts gave higher regenerant recovery compared with medium containing Murashge and Skoog salts, when cross progeny were tested. Received: 6 March 1998 / Revised: 30 April 1998 / Accepted: 16 November 1998  相似文献   

18.
Zu-Hua Yin  John A. Raven 《Planta》1998,205(4):574-580
The impacts of various nitrogen sources, i.e. NO 3, NH4 + or NH4NO3 in combination with gaseous NH3, on nitrogen-, carbon- and water-use efficiency and 13C discrimination (δ13C) by plants of the C3 species Triticum aestivum L. (wheat) and the C4 species Zea mays L. (maize) were studied. Triticum aestivum and Z. mays were hydroponically grown with 2 mol · m−3 of N supplied as NO 3, NH4 + or NH4NO3 for 21 and 18 d, respectively, and thereafter exposed to gaseous NH3 at 320 μg · m−3 or to ambient air for 7 d. In T. aestivum and Z. mays over a 7-d growth period, nitrogen-use efficiency (NUE) values were influenced by N-sources in the decreasing order NH4NO3-N > NO 3-N > NH4 +-N and NO 3-N > NH4NO3-N > NH4 +-N, respectively. Fumigation with NH3 decreased the NUE values of plants grown with any of the N-forms. During 28- and 7-d growth periods, N-sources affected water-use efficiency (WUE) values in the decreasing order of NH4 +-N > NO 3-N≈NH4NO3-N in non-fumigated T. aestivum, while fumigation with NH3 increased the WUE of NO 3-grown plants. There were insignificant effects of N-sources on WUE values of Z. mays over 25- and 7-d growth periods. Furthermore, δ13C values in plant tissues (leaves, stubble and roots) were higher (less negative) in NH4 +-grown plants of T. aestivum and Z. mays than in those supplied with NH4NO3 or NO 3. Regardless of the N-form supplied to the roots of the plant species, exposure to NH3 caused more-positive δ13C values in the plant tissues. These results indicate that the variations in N-source were associated with small but significant variations in δ13C values in plants of T. aestivum and Z. mays. These differences in δ13C values are in the direction expected from differences in WUE values over long or short growth periods and with differences in the extent of non-Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase, EC 4.1.1.39) carboxylate contribution to net C acquisition, as a function of N-source. Received: 12 September 1997 / Accepted: 13 January 1998  相似文献   

19.
Summary The important advances in coffee biotechnological techniques which have been made particularly during the last 10yr could benefit the coffee breeder in practice and open new perspectives for the development of new varieties. The molecular phylogeny of Coffea species has been established using DNA sequence data. The molecular markers have revealed an extremely reduced genetic diversity in Coffea arabica L. in comparison to C. canephora. However, wild accessions collected in the Ethiopian highlands appeared to constitute a valuable gene reservoir. A complete genetic linkage map of C. canephora was reported and additional ones are being constructed, particularly on C. arabica. The integration of Molecular Assisted Selection in coffee breeding promises to drastically increase the efficiency of breeding programs. Economically important genes of the caffeine biosynthetic pathway or genes encoding for seed storage proteins have been isolated. The high performance already achieved in the in vitro propagation process by somatic embryogenesis offers the possibility to mass propagate superior hybrids in different countries of both C. arabica (selected F1 hybrids) and C. canephora (rootstock variety). Pilot productions by somatic embryogenesis currently permit preparation for commercial application. Somaclonal variation was observed. The percentage of the off-types can vary between 3 and 10% depending on the genotype. Seed cryopreservation enables a routine use for long-term conservation of coffee genetic resources. Transgenic plants have been obtained for the C. arabica and C. canephora cultivated species through Agrobacterium-mediated transformation which constitutes the technique now currently used to transfer directly genes in coffee plants.  相似文献   

20.
We investigated the effects of plant growth regulators [6-benzyladenine (BA), kinetin (Kin), 6-γ,γ-dimethylallylaminopurine (2iP), thidiazuron (TDZ) and α-naphthaleneacetic acid (NAA)], modified Murashige and Skoog (MS) medium containing 10 mM NH4 + and 5 mM NO3 and supplemented with 2iP, BA, Kin and NAA (MSM medium), and two elicitors [jasmonic acid (JA), and salicylic acid (SA)], on plant growth and accumulation of hypericins (hypericin and pseudohypericin) and hyperforin in shoot cultures of Hypericum hirsutum and H. maculatum. Our data suggested that culture of shoots on MS medium supplemented with BA (0.4 mg l−1) or Kin (0.4 mg l−1) enhanced production of hypericins in H. maculatum and hyperforin in H. hirsutum. Hypericins and hyperforin concentrations decreased in both species when TDZ (0.4 mg l−1) was added to the MS medium. Also, TDZ induced hyperhydric malformations and necrosis of regenerated shoots. Cultivation of H. maculatum on MSM medium resulted in approximately twofold increased production of hypericins compared to controls, and the growth of H. hirsutum shoots on the same medium led to a 6.16-fold increase in hyperforin production. Of the two elicitors, SA was more effective in stimulating the accumulation of hypericins. At 50 μM, SA enhanced the production of hypericin (7.98-fold) and pseudohypericin (13.58-fold) in H. hirsutum, and, at 200 μM, enhanced the production of hypericin (2.2-fold) and pseudohypericin (3.94-fold) in H. maculatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号