共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Ishikawa 《Radiation and environmental biophysics》1970,7(1):1-7
Summary Poly-L-glutamic acid (PLGA) in aqueous solution in helical or random coil form was irradiated in air by X-rays or ultra-violet light. It was observed that both X-rays and ultra-violet light caused degradation of PLGA in either form. The changes in molecular weight of PLGA in alkaline solutions caused by X-ray irradiation were larger than those in acidic solutions. This fact indicates that the coil form suffers more degradation than the helix form. X-rays caused little change in the conformation of PLGA, while ultra-violet light effectively broke the helix form. The decrease in helix content brought about by ultra-violet exposure could not be explained just by degradation. 相似文献
2.
Adsorption characteristics of lignosulfonates in salt-free and salt-added aqueous solutions 总被引:1,自引:0,他引:1
Five sodium lignosulfonate (SL) fractions with narrow molecular weight distribution and known salt content were used as the polyanion to build up layer-by-layer self-assembly multilayers with poly(diallyldimethylammonium chloride) (PDAC) as polycation. It is interesting to find that the salt-free SL is hardly adsorbed on the PDAC surface, but the SL in salt-added solutions can be self-assembled well with PDAC to form SL/PDAC multilayers. When the five SL fractions dissolved in saline solutions are adsorbed on the PDAC surface by a self-assembly technique, SL with higher M(w) shows a higher adsorption amount than does SL with lower M(w). The driving forces of self-assembly of SL and PDAC are discussed based on the solution behaviors and adsorption characteristics of SL in salt-free and salt-added aqueous solutions. A possible self-assembled mechanism of SL and PDAC is electrostatic or cation-π interactions, but the SL cannot be adsorbed onto the PDAC surface without a hydrophobic interaction. With the addition of enough salt, the Coulomb interaction of SL becomes negligible, but the adsorption amount increases, indicating that the electrostatic interaction is not the main driving force of SL/PDAC self-assembly. For adsorption of SL in saline solution onto the PDAC surface, the cation-π interaction is the main driving force, and the hydrophobic interaction plays an important role in the adsorbed amount. 相似文献
3.
The dielectric features of poly(L -glutamic acid) are studied by the Fourier synthesized pseudorandom noise method in a time domain combined with a four-electrode cell. Polymer concentration dependence, the effect of the solvent viscosity, salt effects, and pH dependence are studied concomitantly with measurements of CD. A helix-to-coil transition occurs near pH 5.6 for a salt-free solution; at higher pH values, the polymer has an ionized random-coil conformation, and at lower pH, it has a deionized α-helical conformation. When it is in the ionized random-coil conformation, with the usual features of an electrolytic polymer, the solution shows a relaxation spectrum with a large dielectric increment at low frequencies. In the deionized α-helical state, no distinct relaxation curves are obtained, which does not deny the existence of a permanent peptide dipole. The pH dependence of the dielectric increment does not mainly correspond to the conformational change from helix to coil, but rather corresponds to the change of chain expansion on account of a charge–charge interaction under low ionic strength, which is conceived of by a viscosity measurement. 相似文献
4.
In this work, detailed dielectric measurements are presented on aqueous electrolytic solutions of NaCl and KCl in a broad frequency range, typical for modern telecommunication techniques. The complex dielectric permittivity or equivalently the complex conductivity are systematically studied as function of frequency (100 MHz-40 GHz), temperature (10-60 degrees C) and molar concentration (0.001-1 mol/l). By a detailed analysis of the dielectric results using an asymmetrically broadened Cole-Davidson distribution of relaxation times, in addition to dc conductivity, the dielectric response as function of frequency, temperature, and molar concentration was fully parameterized by a total of 13 parameters. This model ansatz and the 13 parameters include an enormous predictive power, allowing a reasonable estimation of the dielectric constant, loss, and the conductivity for any set of external variables frequency, temperature and concentration. The proposed method is not only useful for rather simple electrolytic solutions, but also for cell suspensions and biological matter, if additional processes, especially at low frequencies, are adequately taken into account. 相似文献
5.
Dielectric dispersion in aqueous solutions of oxyhaemoglobin and carboxyhaemoglobin 总被引:1,自引:1,他引:1
下载免费PDF全文

The relative permittivity and conductivity of aqueous solutions of oxyhaemoglobin and carboxyhaemoglobin were measured over the frequency range 150kHz-100MHz. To minimize errors of measurement the investigations were carried out with three different samples of each type of haemoglobin, independent apparatus being used in two different laboratories. The dielectric increment and relaxation time were calculated at each of several temperatures from the results. These lead to a dipole moment of 400 Debyes and an activation enthalpy of 17.6+/-1.4kJ.mol(-1), both of which were found to be independent of temperature to within experimental error over the range 3-35 degrees C. The value of the dipole moment shows that the distribution of charge throughout the haemoglobin molecule is nearly symmetrical with respect to the centre of charge. The magnitude of the activation enthalpy is similar to that of the viscosity of water, in accord with the common observation that dielectric relaxation and viscosity are related phenomena. No significant differences are found between the dielectric parameters of oxyhaemoglobin and carboxyhaemoglobin. Combining the results with those obtained from X-ray diffraction of the solid a hydration value of 0.45g of water/g of protein is suggested, subject to the limitations of the model used. Finally, the results indicate the presence of a subsidiary dispersion, which could be attributed to the above quantity of bound water having a static permittivity of about 100 and a relaxation frequency in the region 100-200MHz. 相似文献
6.
Yoon G 《Biosensors & bioelectronics》2011,26(5):2347-2353
Impedance spectroscopy was applied to determine glucose concentration in the interstitial fluid for its potential use in diabetic monitoring. For this purpose, the changes in the measured dielectric properties due to the presence of glucose in water and saline solutions were examined between 40 Hz and 110 MHz. Electrode polarization (EP) was a dominant factor which shaped the spectrum at low frequencies. A theoretical model of EP using a constant phase-angle-element produced excellent matches to the measured data. By fitting the measured data to the model, the relative permittivity (?(h)) and conductivity (σ(l)) were obtained. For deionized water, the relative permittivity dropped from 80.1 to 73.2 and conductivity ranged between 0.142 and 0.212 mS/m when the glucose concentration was increased from 0 to 32 g/dl. For the same variation of glucose level in 0.15 M NaCl, ?(h) was reduced from 79.8 to 71.5 and σ(l) decreased from 1.384 to 0.522 S/m. Glucose level produced a definite change in dielectric properties. However, the changes within the physiological range of glucose (less than a few hundred mg/dl) were small and appeared to be within the measurement error. 相似文献
7.
Cellulase (Cellulosin AC-8) was immobilized on poly-L-glutamic acid. This immobilized cellulase (IC) is water soluble in the neutral and alkaline solutions, where IC has the activity, while IC can be made insoluble by lowering the pH so that it can be recovered from the reaction mixture with its activity. The optimum pH and temperature were determined to be 5.5 and 55 degrees C, respectively. The stability of IC against change in the pH and temperature was improved by the immobilization. Solvolysis of 3N-NaOH-treated cellulose, with IC under the optimum conditions found here, led to the production of low-molecular-weight compounds. 相似文献
8.
9.
10.
Rheological properties of the water solutions of H+- and Na+-DNA were studied at shear rates in the range of 0.12-126 sec-1. It was found that the concentration dependences of reduced viscosity of these systems have the maxima which displaced to the left along abscissa after ultrasonic degradation or long keeping and to the right after the salt or urea addition. Na+-DNA solutions have the rheological curve of flow typical of pseudoplastical systems (RCF-1): the viscosity decreases with increasing shear rate. H+-DNA solutions undergo RCF-1 RCF-2 transition leading to reverse dependence of viscosity on shear rate after long keeping or sonicating (i. e. the systems become dilatant). At centrifugation and in shear fields RCF-2 RCF-1 transition occurs. Urea prevents both transitions. These discovered phenomena as well as weakening of the dilatant properties in concentrated H+-DNA solutions allow us to assume that in these systems exist circular structures consisting of single strands of DNA associated by means of ionic bonds between phosphates and protonated bases. Rheological behaviour of DNA obtained by the method of Georgiev and Struchkov was explained by the presence of circular double stranded DNA molecules in their preparations. The analysis of the non-equilibrium behavior of water solutions of DNA allows to determine the rate constants of H+- and Na+-DNA unwinding. 相似文献
11.
The dependence of the dielectric constant and dielectric loss of aqueous solutions of poly-ε, N-succinyl-L -lysine on its degree of polymerization, degree of neutralization, concentration of the polymer, and counterion type was studied in a frequency range from 300 Hz to 5 MHz. Regardless of the conformation, a low-frequency dispersion in a frequency range lower than 10 kHz and a high-frequency dispersion in a range higher than 100 kHz were found. The large value of the dielectric increment, its nonlinear dependence on concentration, its remarkable dependence on counterion type, and its dependence on the degree of polymerization suggest that the low-frequency dispersion is mainly due to the polarization of loosely bound counterions. These data were found for both the helical and coiled forms. The rotational motion of the electric dipole on the molecule could not have been primarily responsible for these results. On the other hand, the high-frequency dispersions may be attributable to the Maxwell–Wagner-type effect. The results were compared with the dispersions of poly(L -glutamic acid), poly(L -lysine), and their salts reported previously. 相似文献
12.
Two electrophoretic components have been detected on the ascending boundary in unbuffered solutions of polyglutamic acid and polylysine under certain experimental conditions. If the conditions are favorable to aggregation, another maximum, the third in order, is formed on this boundary. We attribute this maximum to the formation of aggregates. The behavior of both boundaries and all components at various pH, concentrations, and temperature of solutions and at different molecular weights of polymers was described. 相似文献
13.
The surface tension, sigma, of solutions of L-leucine (CH3)2CHCH2CH(NH2)COOH in water, as well as in aqueous solutions of NaOH and HCl were measured in the temperature range between 278 and 308 K using the Wilhelmy plate method. L-Leucine was found to be a very weak surfactant, which can be understood if assuming strong interactions of this solute with the water structure. Striking differences were observed in the surface entropy of L-leucine solutions in water, 0.5 M HCl and 0.5 M NaOH. Moreover, surface activity of the solute is much lower than that supposed taking into account the hydrophobicity of this amino acid. It was concluded that the observed phenomena are caused by the water structure changes close to the side chain of leucine, caused by enforced hydrophobic hydration, i.e. formation of clathrate-like hydrates. 相似文献
14.
Thermal properties of ethylene glycol aqueous solutions 总被引:3,自引:0,他引:3
Preventing ice crystallization by transforming liquids into an amorphous state, vitrification can be considered as the most suitable technique allowing complex tissues, and organs cryopreservation. This process requires the use of rapid cooling rates in the presence of cryoprotective solutions highly concentrated in antifreeze compounds, such as polyalcohols. Many of them have already been intensively studied. Their glass forming tendency and the stability of their amorphous state would make vitrification a reality if their biological toxicity did not reduce their usable concentrations often below the concentrations necessary to vitrify organs under achievable thermal conditions. Fortunately, it has been shown that mixtures of cryoprotectants tend to reduce the global toxicity of cryoprotective solutions and various efficient combinations have been proposed containing ethanediol. This work reports on the thermal properties of aqueous solutions with 40, 43, 45, 48, and 50% (w/w) of this compound measured by differential scanning calorimetry. The glass forming tendency and the stability of the amorphous state are evaluated as a function of concentration. They are given by the critical cooling rates v(ccr)above which ice crystallization is avoided, and the critical warming rates v(cwr) necessary to prevent ice crystallization in the supercooled liquid state during rewarming. Those critical rates are calculated using the same semi-empirical model as previously. This work shows a strong decrease of averaged critical cooling and warming rates when ethanediol concentration increases, V(ccr) and V(cwr) = 1.08 x 10 (10) K/min for 40% (w/w) whereas V(ccr) = 11 and V(cwr) = 853 K/min for 50% (w/w). Those results are compared with the corresponding properties of other dialcohols obtained by the same method. Ethylene glycol efficiency is between those of 1,2-propanediol and 1,3-propanediol. 相似文献
15.
Conductometric and spectrophotometric investigations of concentrated salt-free solutions of poly(A) -- poly(U) demonstrated the 1:1 complex formation. It was accomplished by the increase of solution conductivity in contrast to the situation when DNA redenaturation takes place. 相似文献
16.
17.
The relative permittivity and dielectric loss of aqueous solutions of plasmid (pUC8.c1 and pUC8.c2) DNA have been measured at 20 degrees C over the frequency range 100 MHz-10 GHz. The solutions had a concentration of 0.1% DNA, and were studied both in the relaxed and the supercoiled form. The dielectric measurements were made using a variety of techniques including frequency domain and time domain methods of operation. No evidence of any resonance absorption, nor of any other kind of enhanced absorption, was observed. 相似文献
18.
19.
20.
J R Cann 《Biochemistry》1971,10(20):3707-3712