首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mannosidase II was purified from mung bean seedlings to apparent homogeneity by using a combination of techniques including DEAE-cellulose and hydroxyapatite chromatography, gel filtration, lectin affinity chromatography, and preparative gel electrophoresis. The release of radioactive mannose from GlcNAc[3H]Man5GlcNAc was linear with time and protein concentration with the purified protein, did not show any metal ion requirement, and had a pH optimum of 6.0. The purified enzyme showed a single band on SDS gels that migrated with the Mr 125K standard. The enzyme was very active on GlcNAcMan5GlcNAc but had no activity toward Man5GlcNAc, Man9GlcNAc, Glc3Man9GlcNAc, or other high-mannose oligosaccharides. It did show slight activity toward Man3GlcNAc. The first product of the reaction of enzyme with GlcNAcMan5GlcNAc, i.e., GlcNAcMan4GlcNAc, was isolated by gel filtration and subjected to digestion with endoglucosaminidase H to determine which mannose residue had been removed. This GlcNAcMan4GlcNAc was about 60% susceptible to Endo H indicating that the mannosidase II preferred to remove the alpha 1,6-linked mannose first, but 40% of the time removed the alpha 1,3-linked mannose first. The final product of the reaction, GlcNAcMan3GlcNAc, was characterized by gel filtration and various enzymatic digestions. Mannosidase II was very strongly inhibited by swainsonine and less strongly by 1,4-dideoxy-1,4-imino-D-mannitol. It was not inhibited by deoxymannojirimycin.  相似文献   

2.
Two alpha-D-mannosidases have previously been identified in rat epididymis. This communication reports the purification and characterization of the "acid" alpha-D-mannosidase. The enzyme was purified over 1000-fold to near homogeneity by acetone and (NH4)2SO4 precipitation followed by ion-exchange and hydroxylapatite chromatography. The molecular weight of the enzyme was estimated to be 220,000 by gel filtration. Polyacrylamide gel electrophoresis of the native enzyme under two conditions of buffer and pH showed a single band when stained for protein while electrophoresis under denaturing conditions resulted in bands of apparent Mr 60,000 and 31,000. The enzyme is a glycoprotein containing about 5.6% hexose. In addition to mannose (3.1%) and glucosamine (2.0%), the enzyme also contained small amounts of glucose, fucose, and galactose. Chemical analysis indicated the absence of sialic acid. The substrate specificity of the purified enzyme was investigated using linear and branched mannose-containing oligosaccharides. The enzyme cleaved linear oligosaccharides [Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc and Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc] very efficiently. However, little or no activity was observed toward high mannose oligosaccharides (Man9GlcNAc through Man5GlcNAc) or the branched trimannosyl derivative Man3GlcNAc. This specificity is very similar to that observed with rat kidney lysosomal alpha-D-mannosidase. Additional evidence that the epididymal enzyme is essentially a lysosomal alpha-D-mannosidase is the fact that polyclonal antibody prepared against the purified epididymal enzyme cross-reacted with lysosomal alpha-D-mannosidase from several rat tissues and with acidic alpha-D-mannosidase of a human cell line, results suggesting that the antibody will be useful in studying the biosynthesis and turnover of lysosomal alpha-D-mannosidases in at least two species.  相似文献   

3.
An alpha-1,2-mannosidase involved in the processing of N-linked oligosaccharides was prepared from the microsomal fraction of developing castor bean cotyledons. The processing alpha-mannosidase was solubilized with 1.0% Triton X-100 and purified by ion-exchange chromatography followed by two gel filtration steps. The enzyme obtained could convert Man9GlcNAc2-PA to Man5GlcNAc2-PA, but this enzyme was inactive with Man5GlcNAc2-PA, Man4GlcNAc2-PA, and p-nitrophenyl-alpha-D-mannopyranoside. The enzyme was optimally active between pH 5.5-6.0. The processing mannosidase was inhibited by deoxymannojirimycin, EDTA, and Tris ions but not by swainsonine. Structural analyses of the mannose-trimming intermediates produced by the alpha-mannosidase revealed that specific intermediates were formed during conversion of Man9GlcNAc2-PA to Man5GlcNAc2-PA.  相似文献   

4.
Glucosidase II was purified approximately 1700-fold to homogeneity from Triton X-100 extracts of mung bean microsomes. A single band with a molecular mass of 110 kDa was seen on sodium dodecyl sulfate gels. This band was susceptible to digestion by endoglucosaminidase H or peptide glycosidase F, and the change in mobility of the treated protein indicated the loss of one or two oligosaccharide chains. By gel filtration, the native enzyme was estimated to have a molecular mass of about 220 kDa, suggesting it was composed of two identical subunits. Glucosidase II showed a broad pH optima between 6.8 and 7.5 with reasonable activity even at 8.5, but there was almost no activity below pH 6.0. The purified enzyme could use p-nitrophenyl-alpha-D-glucopyranoside as a substrate but was also active with a number of glucose-containing high-mannose oligosaccharides. Glc2Man9GlcNAc was the best substrate while activity was significantly reduced when several mannose residues were removed, i.e. Glc2Man7-GlcNAc. The rate of activity was lowest with Glc1Man9GlcNAc, demonstrating that the innermost glucose is released the slowest. Evidence that the enzyme is specific for alpha 1,3-glucosidic linkages is shown by the fact that its activity on Glc2Man9GlcNAc was inhibited by nigerose, an alpha 1,3-linked glucose disaccharide, but not by alpha 1,2 (kojibiose)-, alpha 1,4(maltose)-, or alpha 1,6 (isomaltose)-linked glucose disaccharides. Glucosidase II was strongly inhibited by the glucosidase processing inhibitors deoxynojirimycin and 2,6-dideoxy-2,6-imino-7-O-(beta-D- glucopyranosyl)-D-glycero-L-guloheptitol, but less strongly by castanospermine and not at all by australine. Polyclonal antibodies prepared against the mung bean glucosidase II reacted with a 95-kDa protein from suspension-cultured soybean cells that also showed glucosidase II activity. Soybean cells were labeled with either [2-3H]mannose or [6-3H]galactose, and the glucosidase II was isolated by immunoprecipitation. Essentially all of the radioactive mannose was released from the protein by treatment with endoglucosaminidase H. The labeled oligosaccharide(s) released by endoglucosaminidase H was isolated and characterized by gel filtration and by treatment with various enzymes. The major oligosaccharide chain on the soybean glucosidase II appeared to be a Man9(GlcNAc)2 with small amounts of Glc1Man9(GlcNAc)2.  相似文献   

5.
Arylsulfatase (aryl-sulfate sulfohdydrolase, EC 3.1.6.1) has been purified from SO4-2-minus-starved cells of Chlamydomonas reinhardti. The enzyme was isolated from acetone-powder extract by (NH4)2SO4 precipitation, Sephadex G-200 filtration and ion-exchange chromatography. Only one fraction of aryl-sulfatase was found. The final preparation was homogenous by the criteria of sedimentation, diffusion and polyacrylamide gel electrophoresis. The purified enzyme had a molecular weight of about 150 000, estimated by ultracentrifugation and gel filtration, and an isoelectric point of 9.0. The properties of the enzyme as investigated in intact cells and in the purified state were found to be very similar except for the temperature optimum. Imidazole strongly increased the enzyme by increasing the V, but reduced the affinity for the substrate. The enzyme activity was competitively inhibited by borate with a greater affinity for borate than for the substrate. The Chlamydomonas enzyme is a Type I arylsulfatase since it was inhibited by CN-minus, but not SO4-2-minus and phosphate.  相似文献   

6.
Saccharomyces cerevisiae Man9-alpha-mannosidase, responsible for trimming Man9GlcNAc2 in the endoplasmic reticulum to Man8GlcNAc2, the substrate for oligosaccharide elongation, has been purified to homogeneity from stabilized microsomal membranes without employing autolytic digestion. The activity was solubilized by the zwitterionic detergent, 3-[(3-cholamidopropyl)dimethyl ammonio]-1-propanesulphonate (CHAPS), whose presence was necessary for maximal activity. Purification included Q-Sepharose ion-exchange chromatography, preparative isoelectric focusing and HPLC gel filtration on TSK 3000 matrix. Overall purification from post-nuclear supernatants was estimated to be 110,000-fold with a 50% recovery of activity. The purified enzyme hydrolysed Man9GlcNAc1,2 from thyroglobulin or oligosaccharide-lipid, but not invertase Man9GlcNAc, Man1 alpha 2Man1 alpha OCH3 or p-nitrophenyl-alpha-D-mannopyranoside. Conversion of thyroglobulin Man9GlcNAc to Man8GlcNAc was linear with time and enzyme concentration, with an apparent Km of 0.2 mM and a specific activity of 220 IU/mg. Glc3Man9GlcNAc2 from oligosaccharide-lipid was as good a substrate as Man9GlcNAc, but the lipid-linked Man7GlcNAc2 isomer was hydrolysed at only 10% of this rate. Hydrolysis of defined isomers of IgM and bovine thyroglobulin Man6,7,8GlcNAc indicated that, for maximal alpha 1,2-mannosidase activity, only the alpha 1,2-linked terminal mannoses on the alpha 3 branch of the Man9GlcNAc precursor were dispensable. Isomers lacking the terminal alpha 1,2-linked mannose on the alpha 6 branch were hydrolysed at only approximately 10% of the maximal rate. The enzyme exhibited a pI of 5.3 and a pH optimum at 6.5. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the absence of reducing agents gave a single sharp band at 66 kDa, while in the presence of beta-mercaptoethanol equimolar amounts of two peptides, one of 44 kDa and one of 23 kDa, were obtained. Sizing on Sephacryl SF300, Superose 12 and TSK 3000 provided a holoenzyme mol. wt of 60-68 kDa, indicating that the isolated active form of the Man9-alpha-mannosidase was composed of one each of the sulphydryl-bonded dissimilar peptides. The enzyme bound to concanavalin A (ConA)-Sepharose and was eluted with alpha-methylmannoside, indicating the presence of high-mannose oligosaccharides. The Man9-alpha-mannosidase required low levels of Ca2+, which could be removed by EGTA. Activity was restored by Ca2+ or Zn2+, but not by Mg2+ or Mn2+.  相似文献   

7.
The hydroxynitrile lyase (EC 4.1.2.--) which catalyzes the dissociation of the cyanohydrins of acetone and 2-butanone has been isolated and purified from young seedlings of flax (Linum usitatissimum L.). The purification procedure involved precipitation with (NH4)2SO4, chromatofocusing, and chromatography on DEAE-cellulose, hydroxylapatite, Sephacryl 200, and Matrex Red A gel columns with a final recovery of 21%. Purification of 136-fold yielded an apparently homogeneous preparation that, in contrast to the lyases isolated from Prunus species, is not a flavoprotein. The subunit molecular weight of 42,000 was estimated by gel electrophoresis in the presence of sodium dodecyl sulfate. The native molecular weight of the enzyme was estimated by gel filtration (HPLC) to be 82,000. The enzyme has a narrow pH optimum around 5.5 and is highly stable at 4 degrees C.  相似文献   

8.
R H Douglas  C E Ballou 《Biochemistry》1982,21(7):1561-1570
An enzyme activity in Kluyveromyces lactis that catalyzes the transfer of N-acetylglucosamine from uridine diphosphate N-acetylglucosamine to alpha Man(1 leads to 3) alpha Man ( 1 leads to 2) alpha Man (1 leads to 2)Man to yield alpha Man(1 leads to 3) [alpha GlcNAc(1 leads to 2)] alpha Man(1 leads to 2) alpha Man (1 leads to 2)Man, a mannoprotein side-chain unit, has been solubilized by Triton X-100 and purified 18000-fold by a combination of ion-exchange chromatography, gel filtration, hydrophobic chromatography, and adsorption to a lectin column. The enzyme activity from a K. lactis mutant (mnn2-2) that made mannoprotein lacking N-acetylglucosamine in its side chains, but that possessed a normal level of transferase activity in cell extracts, was purified and compared with the enzyme from the wild-type strain. Both transferase activities are integral membrane proteins found in particles associated with endoplasmic reticulum. The two purified enzymes had the same apparent size, heat stability, Mn2+ requirement, and Km for donor and acceptor and a similar Vmax. Wild-type and mutant cells had similar pool sizes of sugar nucleotide donor, and they incorporated labeled N-acetylglucosamine into chitin at similar rates. No evidence was obtained for an inactive enzyme precursor in mutant cells that was activated upon breaking the cells, nor did the mutant cells contain a transferase inhibitor or a hexosaminidase that could remove the sugar from the mannoprotein during processing and secretion. The mnn2-2 locus appears to be allelic with a second mutant, mnn2-1, that has the same phenotype but that lacks transferase activity in cell extracts. This suggests that the two mutations affect the structural gene for the transferase, and we conclude that the mnn2-2 mutant could contain an altered enzyme that fails to function because it is improperly localized or oriented in the membrane.  相似文献   

9.
A dehydrodicaffeic acid dilactone-forming enzyme was purified from the mycelia of a mushroom, Inonotus sp. K-1410 by calcium acetate treatment, ammonium sulfate precipitation and column chromatography on Sephadex G-100, DEAE-Sephadex A-50 and caffeic acid-bound AH-Sepharose 4B. The enzyme was purified about 1200-fold from a crude extract and shown to be almost completely homogeneous by polyacrylamide gel electrophoresis. The molecular weight of this enzyme was estimated by gel filtration on Sephadex G-100 to be approximately 39,000. The optimal pH for the enzymic conversion of caffeic acid to dehydrodicaffeic acid dilactone is around 6.0. The enzyme is stable up to 60°C and preincubation of the enzyme at 40°C for 10 min gives 1.5-fold activation compared with preincubation at 0°C. The optimal temperature for the enzyme reaction is 40°C.  相似文献   

10.
Three monomeric monocot lectins from Zephyranthes carinata, Zephyranthes candida, and Gloriosa superba with carbohydrate specificity towards mannose derivatives and (or) oligomannose have been isolated and purified from their storage tissues. The lectins were purified by anion-exchange chromatography on DEAE-Sephacyl and by gel filtration chromatography on Biogel P-200 followed by high-performance liquid chromatography. The purified lectins, Z. carinata, Z. candida, and G. superba had molecular masses of 12, 11.5, and 12.5 kDa, respectively, as determined by gel filtration and SDS-PAGE, indicating that they are monomers. In a hapten inhibition assay, methyl-alpha-D-mannopyranoside inhibited agglutination of both Z. candida and Z. carinata; the latter was also inhibited by Man(alpha1-2)Man and Man(alpha1-3)Man. Gloriosa superba showed inhibition only with Man(alpha1-4)Man of all of the sugars and glycoproteins tested. All purified lectins agglutinated red blood cells from rabbit, whereas G. superba was also reactive towards erythrocytes from guinea pig. All of the lectins were nonglycosylated and did not require metal ions for their activity. They were labile above 60 degrees C and were affected by denaturing agents such as urea, thiourea, and guanidine-HCl. The lectins were virtually nonmitogenic, like other members of Amaryllidaceae and Liliaceae. Of the 3 lectins, G. superba was found to be highly toxic to the BSC-1 cell line (African green monkey kidney epithelial cells), while both of the Zephyranthes species showed significant in vitro inhibition of poxvirus replication in BSC-1 cells without any toxic effects to the cells. In addition, Z. candida also exhibited significant anticancer activity against SNB-78, a CNS human cancer cell line.  相似文献   

11.
In order to facilitate the isolation of endo-beta-N-acetylglucosaminidase for the structural analysis of glycoconjugates, we have isolated a strain of Bacillus alvei which produces a high level of endo-beta-N-acetylglucosaminidase. We have also devised a simple procedure for the purification of endo-beta-N-acetylglucosaminidase from B. alvei using mannan-Sepharose affinity chromatography. By using this method, endo-beta-N-acetylglucosaminidase was purified 3300-fold with 85% yield from the crude enzyme obtained by ammonium sulfate precipitation of the culture medium. The molecular weight of this enzyme was estimated to be about 66 000 by gel filtration. When using (Man)6(GlcNAc)2-Asn-Dns as substrate, the optimal activity occurs at pH 6.5 with Km of 1.9 mM. The action of endo-beta-N-acetylglucosaminidase toward several glycopeptides was also studied.  相似文献   

12.
An alpha-mannosidase was purified from developing Ginkgo biloba seeds to apparently homogeneity. The molecular weight of the purified alpha-mannosidase was estimated to be 120 kDa by SDS-PAGE in the presence of 2-mercaptoethanol, and 340 kDa by gel filtration, indicating that Ginkgo alpha-mannosidase may function in oligomeric structures in the plant cell. The N-terminal amino acid sequence of the purified enzyme was Ala-Phe-Met-Lys-Tyr-X-Thr-Thr-Gly-Gly-Pro-Val-Ala-Gly-Lys-Ile-Asn-Val-His-Leu-. The alpha-mannosidase activity for Man(5)GlcNAc(1) was enhanced by the addition of Co(2+), but the addition of Zn(2+), Ca(2+), or EDTA did not show any significant effect. In the presence of cobalt ions, the hydrolysis rate for pyridylaminated Man(6)GlcNAc(1) was significantly faster than that for pyridylaminated Man(6)GlcNAc(2), suggesting the possibility that this enzyme is involved in the degradation of free N-glycans occurring in developing plant cells (Kimura, Y., and Matsuo, S., J. Biochem., 127, 1013-1019 (2000)). To our knowledge, this is the first report showing that plant cells contain an alpha-mannosidase, which is activated by Co(2+) and prefers the oligomannose type free N-glycans bearing only one GlcNAc residue as substrate.  相似文献   

13.
An H2O2-requiring oxygenase found in the extracellular medium of ligninolytic cultures of the white rot fungus Phanerochaete chrysosporium was purified by DEAE-Sepharose ion-exchange chromatography and gel filtration on Sephadex G-100. Sodium dodecyl sulfate (SDS)-disc gel electrophoresis indicated that the purified protein was homogeneous. The Mr of the enzyme as determined by gel filtration and SDS-polyacrylamide gel electrophoresis was 41,000. The absorption spectrum of the enzyme indicated the presence of a heme prosthetic group. The absorption maximum of the native enzyme (407 nm) shifted to 435 nm in the reduced enzyme and to 420 nm in the reduced-CO complex. The pyridine hemochrome absorption spectrum indicated that the enzyme contained one molecule of heme as iron protoporphyrin IX. Both CN- and N-3 bound readily to the native enzyme, indicating an available coordination site and that the heme iron was high spin. The purified enzyme generated ethylene from 2-keto-4-thiomethyl butyric acid, and oxidized a variety of lignin model compounds, including the diarylpropane, 1-(3'4'-diethoxyphenyl)1,3-dihydroxy-2-(4"-methoxyphenyl)propane (I); a beta-ether dimer, 1-(4'-ethoxy-3'-methoxyphenyl)glycerol-beta-guaiacyl ether (V); an olefin, 1-(4'-ethoxy-3'-methoxyphenyl)-1,2 propene (III); and a diol, 1-(4'-ethoxy-3'-methoxyphenyl)-1,2-propane diol (IV). The products found were equivalent to the metabolic products previously isolated from intact ligninolytic cultures.  相似文献   

14.
An alpha-mannosidase was purified from the magnum section of Japanese quail oviduct by ammonium sulfate precipitation, DEAE-Sephacel chromatography, Sephacryl S-300 chromatography, mannan-Sepharose 4B chromatography, and hydroxyapatite chromatography. The purified alpha-mannosidase (referred to as neutral alpha-mannosidase) showed a single band on polyacrylamide gel with or without sodium dodecyl sulfate. Its molecular weight was found to be 330,000 by gel chromatography. Neutral alpha-mannosidase hydrolyzed p-nitrophenyl alpha-D-mannopyranoside and the pyridylamino derivative of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (Km value was 3 mM). Mannosyl alpha 1-2 linkages in the pyridylamino derivative of Man alpha 1-2 Man alpha 1-6(Man alpha 1-2Man alpha 1-3)Man alpha 1-6(Man alpha 1-2Man alpha 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc were hardly hydrolyzed. Its optimum pH was found to be 7.0. The activity of the enzyme was activated by CO2+, and was potently inhibited by Cu2+, Hg2+, swainsonine, and 1-deoxymannojirimycin.  相似文献   

15.
同步纯化人心肌肌钙蛋白T、I   总被引:4,自引:0,他引:4  
同步纯化人心肌肌钙蛋白T、I李志梁付朝平钱学贤陆青王素华黎梅兰(第一军医大学珠江医院心内科,广州510282)关键词心肌肌钙蛋白T;心肌肌钙蛋白I;同步纯化收稿日期:1996-04-17;接受日期:1996-08-27。心肌肌钙蛋白包括3种不同的蛋白...  相似文献   

16.
Nitric oxide (NO) synthase (EC 1.14.23) has been purified to apparent homogeneity from rat macrophages. The purification procedure involves affinity chromatography with adenosine 2',5'-diphosphate-agarose and gel filtration chromatography on a Superose 12 HR 10/30 column. The apparent molecular weight is 300,000 by gel filtration. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the enzyme migrates as a single protein band with Mr = 150,000. The purified enzyme is colorless, and an absorption maximum is observed at 280 nm. The half-life of the enzyme activity is 6 h at pH 7.4 and 4 degrees C. The enzyme activity required the presence of NADPH, (6R)-5,6,7,8-tetrahydro-L-biopterin, and dithiothreitol. Although the cerebellar and endothelial enzyme require Ca2+ and calmodulin, these are not required by the macrophage enzyme. The macrophage nitric oxide synthase (an inducible enzyme) seems to be different from the cerebellar and endothelial enzyme (a constitutive enzyme).  相似文献   

17.
Beta-Glucuronidase has been purified from mouse kidneys previously induced by gonadotrophin to a specific enzyme activity 15 times higher than the non-induced kidney. The purification procedure includes ultrasonication to solubilize the enzyme, acid and ammonium sulfate precipitations, gel filtration in Sephadex G-200, DEAE-ion exchange chromatography, and isoelectric focusing. The resulting product has a specific activity of 284,000 Fishman units/mg of protein, representing a 1,090-fold purification and is 17,000-fold higher than the level in the non-induced kidney. The purified beta-glucuronidase is apparently homogeneous by criteria of gel filtration, sodium dodecyl sulfate gel electrophoresis, and immunodiffusion. Characterization of the purified enzyme showed that it is identical with the lysosomal isoenzymic from electrophoretically, has subunit molecular weight of 74,000 (estimated by sodium dodecyl sulfate gel electrophoresis) and oligomer molecular weight of 300,000. The purified enzyme is stable at high temperature (up to 55 degrees) and at wide range of pH (from 4 to 11). It has a pH optimum for its activity at 4.7 and a Km of 1.18 times 10- minus 4 M. The purification and characterization of this enzyme from mouse kidney will have significance in the understanding of the molecular nature of the isoenzymes of beta-glucuronidase and will be useful in future studies on the mechanism of intracellular transport and distribution of this hydrolase.  相似文献   

18.
Oxytocinase (cystyl-aminopeptidase) [EC 3.4.11.3] was isolated from monkey placenta in a purified form by a six-step prodedure comprising extraction from monkey placenta homogenate, ammonium sulfate fractionation, repeated chromatography on hydroxylapatite, chromatography on a column of DEAE-cellulose and gel filtration on a column of Sephadex G-200. The purified enzyme showed a single band on polyacrylamide disc electrophoresis. Oxytocin was inactivated by this enzyme preparation. The enzyme hydrolyzed several aminoacyl-beta-naphthylamides. A terminal amino group was required for enzyme activity. The molecular weight of the purified enzyme was estimated to be 87,000 by gel filtration and 83,000 by sodium dodecyl sulfate gel electrophoresis. Other properties of the enzyme, the effects of metal ions and various chemical reagents on the enzyme activity, the pH optimum, and Km values for a number of aminoacyl-beta-naphthylamides were also examined.  相似文献   

19.
We have purified a protein with hemagglutinating activity from the seeds of a West African legume, Bowringia milbraedii. The purified protein, designated BMA, has a native Mr = 38,000 on gel filtration and a subunit size of Mr = 16,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or nonreducing conditions. Hemagglutination was inhibited most effectively by Man alpha 1----2 linked sugars. Affinity chromatography of oligosaccharides on BMA-Sepharose showed that Man alpha 1----2Man alpha 1----2Man alpha 1----3Man beta 1----4GlcNAcol (where GlcNAcol is N-acetylglucosaminitol) and Man alpha 1----2Man alpha 1----3Man beta 1----4GlcNAcol were retarded on the column, whereas Man alpha 1----3Man beta 1----4GlcNAcol did not bind. Oligomannosidic-type glycans obtained by treatment of [3H] mannose-labeled baby hamster kidney cells with endo-beta-N-acetylglucosaminidase H bound more strongly to BMA-Sepharose and required 10 or 200 mM methyl-alpha-mannoside for elution. Oligosaccharides bearing the sequence Man alpha 1----2Man alpha 1----6Man alpha 1----6Man, i.e. Man9GlcNAc and certain isomers of Man8GlcNAc and Man7GlcNAc, bound more tightly than other Man8 GlcNAc and Man7GlcNAc isomers lacking this sequence. Man6GlcNAc and Man5GlcNAc were weakly bound. These results suggest that BMA binds preferentially to glycoproteins that are subjected to early steps of oligosaccharide processing in the endoplasmic reticulum but not to glycoproteins that are exposed to more extensive processing by Golgi mannosidases. Staining of permeabilized cells with BMA-chromophore conjugates revealed a reticular cytoplasmic pattern consistent with a preferential visualization of the endoplasmic reticulum. BMA staining was less evident in the juxtanuclear regions that were stained brightly with wheat germ agglutinin, a lectin that binds preferentially to sialylated glycoproteins located in Golgi compartments.  相似文献   

20.
 磷蛋白磷酸酶是磷酸化/脱磷酸化作用中重要的调节酶。本文建立了小鼠腹水型肝癌细胞胞浆内磷蛋白磷酸酶(PrP)的纯化方法。用~(32)P-酪蛋白为底物测定活力。经纯化的酶纯度提高1380倍,聚丙烯酰胺梯度凝胶电泳检查,只有一条泳带。用凝胶过滤法和聚丙烯酰胺梯度凝胶电泳法测得该酶分子量为200,000。该酶催化~(32)P-酪蛋白脱磷酸化反应的最适pH7.2,对热不稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号