首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rrs1p, a ribosomal protein L11-binding protein, has an essential role in biogenesis of 60S ribosomal subunits. We obtained conditionally synthetic lethal allele with the rrs1-5 mutation and determined that the mutation is in REX1, which encodes an exonuclease. The highly conserved leucine at 305 was substituted with tryptophan in rex1-1. The rex1-1 allele resulted in 3′-extended 5S rRNA. Polysome analysis revealed that rex1-1 and rrs1-5 caused a synergistic defect in the assembly of 60S ribosomal subunits. In vivo and in vitro binding assays indicate that Rrs1p interacts with the ribosomal protein L5–5S rRNA complex. The rrs1-5 mutation weakens the interaction between Rrs1p with both L5 and L11. These data suggest that the assembly of L5–5S rRNA on 60S ribosomal subunits coordinates with assembly of L11 via Rrs1p.  相似文献   

3.
Rrs1p is a ribosomal protein L11-binding protein in Saccharomyces cerevisiae. We have obtained temperature-sensitive rrs1 mutants by random PCR mutagenesis. [(3)H]Methionine pulse-chase analysis reveals that the rrs1 mutations cause a defect in maturation of 25S rRNA. Ribosomal protein L25-enhanced green fluorescent protein, a reporter of the 60S ribosomal subunit, concentrates in the nucleus with enrichment in the nucleolus when the rrs1 mutants are shifted to the restrictive temperature. These results suggest that Rrs1p stays on the pre-60S particle from the early stage to very late stage of the large-subunit maturation and is required for export of 60S subunits from the nucleolus to the cytoplasm.  相似文献   

4.
RPL29 (YFR032c-a) is a non-essential gene that codes for a 60S ribosomal subunit protein in Saccharomyces cerevisiae. Deletion of RPL29 leads to a moderate accumulation of half-mer polysomes with little or no change in the amounts of free 60S subunits. In vitro translation and the growth rate are also delayed in the Deltarpl29 strain. Such a phenotype is characteristic of mutants defective in 60S to 40S subunit joining. The Deltarpl29 strain exhibits synthetic lethality with mutations in RPL10, the gene encoding an essential 60S ribosomal subunit protein that is required for 60S to 40S subunit joining. The Deltarpl29 strain also exhibits synthetic lethality with RSA1, a gene encoding a nucleoplasmic protein required for the loading of Rpl10p onto the 60S subunit. Over-expression of RPL10 suppresses the half-mer phenotype of the Deltarpl29 strain, but does not correct the growth defect of the deletion strain. We conclude that absence of Rpl29p impairs proper assembly of proteins onto the 60S subunit and that this retards subunit joining and additionally retards protein synthesis subsequent to subunit joining.  相似文献   

5.
In eukaryotes, nuclear export of the large (60S) ribosomal subunit requires the adapter protein Nmd3p to provide the nuclear export signal. Here, we show that in yeast release of Nmd3p from 60S subunits in the cytoplasm requires the ribosomal protein Rpl10p and the G-protein, Lsg1p. Mutations in LSG1 or RPL10 blocked Nmd3-GFP shuttling into the nucleus and export of pre-60S subunits from the nucleus. Overexpression of NMD3 alleviated the export defect, indicating that the block in 60S export in lsg1 and rpl10 mutants results indirectly from failing to recycle Nmd3p. The defect in Nmd3p recycling and the block in 60S export in both lsg1 and rpl10 mutants was also suppressed by mutant Nmd3 proteins that showed reduced binding to 60S subunits in vitro. We propose that the correct loading of Rpl10p into 60S subunits is required for the release of Nmd3p from subunits by Lsg1p. These results suggest a coupling between recycling the 60S export adapter and activation of 60S subunits for translation.  相似文献   

6.
7.
Saccharomyces cerevisiae Rrs1p is a nuclear protein that is essential for the maturation of 25 S rRNA and the 60 S ribosomal subunit assembly. In two-hybrid screening, using RRS1 as bait, we have cloned YKR081c/RPF2. Rpf2p is essential for growth and is mainly localized in the nucleolus. The amino acid sequence of Rpf2p is highly conserved in eukaryotes from yeast to human. Similar to Rrs1p, Rpf2p shows physical interaction with ribosomal protein L11 and appears to associate with preribosomal subunits fairly tightly. Northern, methionine pulse-chase, and sucrose density gradient ultracentrifugation analyses reveal that the depletion of Rpf2p results in a delayed processing of pre-rRNA, a decrease of mature 25 S rRNA, and a shortage of 60 S subunits. An analysis of processing intermediates by primer extension shows that the Rpf2p depletion leads to an accumulation of 27 SB pre-rRNA, suggesting that Rpf2p is required for the processing of 27 SB into 25 S rRNA.  相似文献   

8.
9.
The large ribosomal subunit protein Rpl10p is required for subunit joining and 60S export in yeast. We have recently shown that Rpl10p as well as the cytoplasmic GTPase Lsg1p are required for releasing the 60S nuclear export adapter Nmd3p from subunits in the cytoplasm. Here, we more directly address the order of Nmd3p and Rpl10p recruitment to the subunit. We show that Nmd3p can bind subunits in the absence of Rpl10p. In addition, we examined the basis of the previously reported dominant negative growth phenotype caused by overexpression of C-terminally truncated Rpl10p and found that these Rpl10p fragments are not incorporated into subunits in the nucleus but instead sequester the WD-repeat protein Sqt1p. Sqt1p is an Rpl10p binding protein that is proposed to facilitate loading of Rpl10p into the 60S subunit. Although Sqt1p normally only transiently binds 60S subunits, the levels of Sqt1p that can be coimmunoprecipitated by the 60S-associated GTPase Lsg1p are significantly increased by a dominant mutation in the Walker A motif of Lsg1p. This mutant Lsg1 protein also leads to increased levels of Sqt1p in complexes that are coimmunoprecipitated with Nmd3p. Furthermore, the dominant LSG1 mutant also traps a mutant Rpl10 protein that does not normally bind stably to the subunit. These results support the idea that Sqt1p loads Rpl10p onto the Nmd3p-bound subunit after export to the cytoplasm and that Rpl10p loading involves the GTPase Lsg1p.  相似文献   

10.
11.
12.
13.
Nuclear export of ribosomes requires a subset of nucleoporins and the Ran system, but specific transport factors have not been identified. Using a large subunit reporter (Rpl25p-eGFP), we have isolated several temperature-sensitive ribosomal export (rix) mutants. One of these corresponds to the ribosomal protein Rpl10p, which interacts directly with Nmd3p, a conserved and essential protein associated with 60S subunits. We find that thermosensitive nmd3 mutants are impaired in large subunit export. Strikingly, Nmd3p shuttles between the nucleus and cytoplasm and is exported by the nuclear export receptor Xpo1p. Moreover, we show that export of 60S subunits is Xpo1p dependent. We conclude that nuclear export of 60S subunits requires the nuclear export sequence-containing nonribosomal protein Nmd3p, which directly binds to the large subunit protein Rpl10p.  相似文献   

14.
Over 30 MAK (maintenance of killer) genes are necessary for propagation of the killer toxin-encoding M1 satellite double-stranded RNA of the L-A virus. Sequence analysis revealed that MAK7 is RPL4A, one of the two genes encoding ribosomal protein L4 of the 60S subunit. We further found that mutants with mutations in 18 MAK genes (including mak1 [top1], mak7 [rpl4A], mak8 [rpl3], mak11, and mak16) had decreased free 60S subunits. Mutants with another three mak mutations had half-mer polysomes, indicative of poor association of 60S and 40S subunits. The rest of the mak mutants, including the mak3 (N-acetyltransferase) mutant, showed a normal profile. The free 60S subunits, L-A copy number, and the amount of L-A coat protein in the mak1, mak7, mak11, and mak16 mutants were raised to the normal level by the respective normal single-copy gene. Our data suggest that most mak mutations affect M1 propagation by their effects on the supply of proteins from the L-A virus and that the translation of the non-poly(A) L-A mRNA depends critically on the amount of free 60S ribosomal subunits, probably because 60S association with the 40S subunit waiting at the initiator AUG is facilitated by the 3' poly(A).  相似文献   

15.
Ribosome synthesis in eukaryotes requires a multitude of trans-acting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied trans-acting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA3, 27SBS and 7SL/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented.  相似文献   

16.
In Saccharomyces cerevisiae, ribosomal protein L7, one of the ∼46 ribosomal proteins of the 60S subunit, is encoded by paralogous RPL7A and RPL7B genes. The amino acid sequence identity between Rpl7a and Rpl7b is 97 percent; they differ by only 5 amino acid residues. Interestingly, despite the high sequence homology, Rpl7b is detected in both the cytoplasm and the nucleolus, whereas Rpl7a is detected exclusively in the cytoplasm. A site-directed mutagenesis experiment revealed that the change in the amino acid sequence of Rpl7b does not influence its sub-cellular localization. In addition, introns of RPL7A and RPL7B did not affect the subcellular localization of Rpl7a and Rpl7b. Remarkably, Rpl7b was detected exclusively in the cytoplasm in rpl7a knockout mutant, and overexpression of Rpl7a resulted in its accumulation in the nucleolus, indicating that the subcellular localization of Rpl7a and Rpl7b is influenced by the intracellular level of Rpl7a. Rpl7b showed a wide range of localization patterns, from exclusively cytoplasmic to exclusively nucleolar, in knock-out mutants for some rRNA-processing factors, nuclear pore proteins, and large ribosomal subunit assembly factors. Rpl7a, however, was detected exclusively in the cytoplasm in these mutants. Taken together, these results suggest that although Rpl7a and Rpl7b are paralogous and functionally replaceable with each other, their precise physiological roles may not be identical.  相似文献   

17.
It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132.  相似文献   

18.
19.
In the yeast Saccharomyces cerevisiae, L30 is one of many ribosomal proteins that is encoded by two functional genes. We have cloned and sequenced RPL30B, which shows strong homology to RPL30A. Use of mRNA as a template for a polymerase chain reaction demonstrated that RPL30B contains an intron in its 5' untranslated region. This intron has an unusual 5' splice site, C/GUAUGU. The genomic copies of RPL30A and RPL30B were disrupted by homologous recombination. Growth rates, primer extension, and two-dimensional ribosomal protein analyses of these disruption mutants suggested that RPL30A is responsible for the majority of L30 production. Surprisingly, meiosis of a diploid strain carrying one disrupted RPL30A and one disrupted RPL30B yielded four viable spores. Ribosomes from haploid cells carrying both disrupted genes had no detectable L30, yet such cells grew with a doubling time only 30% longer than that of wild-type cells. Furthermore, depletion of L30 did not alter the ratio of 60S to 40S ribosomal subunits, suggesting that there is no serious effect on the assembly of 60S subunits. Polysome profiles, however, suggest that the absence of L30 leads to the formation of stalled translation initiation complexes.  相似文献   

20.
The cellular target of curvularol, a G1-specific cell-cycle inhibitor of mammalian cells, was identified by a genetic approach in Saccharomyces cerevisiae. Since the wild-type W303 strain was highly resistant to curvularol, a drug hypersensitive parental strain was constructed in which various genes implicated in general drug resistance had been disrupted. Curvularol resistant mutants were isolated, and strains that exhibited a semi-dominant, curvularol-specific resistance phenotype were selected. All five strains examined were classified into a single genetic complementation group designated YCR1. A mutant gene responsible for curvularol resistance was identified as an allele of the RPL3 gene encoding the ribosomal protein L3. Sequence analysis of the mutant genes revealed that Trp255Cys and Trp255Leu substitutions of Rpl3p are responsible for curvularol resistance. Rpl3p mutants in which Trp255 residue was replaced by other amino acids were constructed. All of these replacements led to varying degrees of increased resistance to curvularol and growth defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号