首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The effect of the addition of a recombinant plasmid containing the pglA gene encoding an alpha-1,4-endopolygalacturonase from Pseudomonas solanacearum on the growth of Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere was determined. Despite a high level of polygalacturonase production by genetically engineered P. putida and P. aeruginosa, the results suggest that polygalacturonase production had little effect on the growth of these strains in soil or rhizosphere.  相似文献   

2.
Large Pseudomonas phages isolated from barley rhizosphere   总被引:1,自引:0,他引:1  
Abstract: Five bacteriophages infecting common fluorescent pseudomonads ( Pseudomonas fluorescens and Pseudomonas putida ) were isolated from barley rhizosphere soil. Morphological and molecular characteristics of the phages are described together with selected phage-host interactions. All phages belonged to the Myoviridae family with isometrical heads on contractile tails; 4 of them were unusually large and had complex protein and DNA profiles. The large phages had estimated genome sizes of 200 kb or more. Restriction enzyme analyses and DNA-DNA hybridizations showed that all isolates represented different phage species. None of the isolates were observed to establish lysogeny with the main host strain, P. putida MM1. The large phages multiplied slowly on their hosts, producing very small plaques; one-step growth experiments with one of the large phages (Psp 4) hence demonstrated a long latent period (2.5 h) and a very small burst size (10 particles). One of the large phages (Psp 3) was abundant in the rhizosphere (approx. 104 pfu g−1 soil) and had a particularly broad host range which extended to both fluorescent ( Pseudomonas aeruginosa, P. fluorescens, P. putida and Pseudomonas chlororaphis ) and non-fluorescent (Pseudomonas stutzeri) Pseudomonas spp. occurring in soil. The ecological importance of the large Pseudomonas phages must be further studied, but their slow multiplication rates suggested a possible mechanism of balanced phage-host co-existence in the rhizosphere.  相似文献   

3.
OprD has been widely described for Pseudomonas aeruginosa at both structural and functional levels. Here, we describe the sequence diversity of the OprD proteins from other fluorescent Pseudomonads. We analysed the sequence of the oprD gene in each of the 49 Pseudomonas isolates, mostly putida and fluorescens species, obtained from various environmental sources, including soil, rhizosphere and hospitals. Phylogeny based on OprD sequences distinguished three well-separated clusters in the P. fluorescens species whereas P. putida isolates formed only one cluster. The OprD sequences were generally well conserved within each cluster whereas on the opposite, they were highly variable from one cluster to another and particularly with regards to the cluster of P. aeruginosa. Predicted secondary structures, based on the topological model elaborated for P. aeruginosa, suggest signatures in the large extracellular loops of OprD, which are linked to the OprD-based clusters. Correlations between these OprD-based clusters and ecological niches, growth on various carbon sources and antibiotic sensitivity were investigated.  相似文献   

4.
The aim of this work was to study the effect of plasmids belonging to different incompatibility groups on the growth of bacteriophages in Pseudomonas aeruginosa and Pseudomonas putida strains. The growth of bacteriophages was shown to be limited most often due to the presence in cells of plasmids belonging to the P-2 incompatibility group. Plasmids of the Inc P-2 group differed from one another in the spectrum of bacteriophages whose growth they limited. Phages whose growth was suppressed in strains containing plasmids of the P-5, P-9 or P-10 incompatibility groups were found. Some plasmids showed no specific interaction with bacteriophages. The plasmids investigated differed in the studied trait in P. aeruginosa and P. putida cells. In contrast to P. aeruginosa PAO, P. putida PpGI plasmid containing cells did not maintain the growth of donor-specific bacteriophages and, to a lesser degree, limited the growth of phages specific for P. putida PpGI.  相似文献   

5.
Two Pseudomonas strains (PpG777 and PaG158) were derived from the parent isolate Pseudomonas incognita (putida). Strain PpG777 resembles the parental culture in growth on linalool as a source of carbon and slight growth on p-cymene, whereas PaG158 grows well on p-cymene, but not on linalool or other terpenes tested, and has a P. aeruginosa phenotype. Curing studies indicate that linalool metabolism is controlled by an extrachromosomal element whose loss forms a stable strain PaG158 with the p-cymene growth and P. aeruginosa phenotype characters. The plasmid can be transferred by PpG777 to both P. putida and P. aeruginosa strains. Surprisingly, the latter assume the P. putida phenotype. We conclude that the genetic potential to oxidize p-cymene is inherent in PpG777 but expression is repressed. Similarly, this observation implies that support of linalool oxidation effectively conceals the P. aeruginosa character.  相似文献   

6.
R' plasmids carrying argF genes from Pseudomonas aeruginosa strains PAO and PAC were transferred to Pseudomonas putida argF and Escherichia coli argF strains. Expression in P. putida was similar to that in P. aeruginosa and was repressed by exogenous arginine. Expression in E. coli was 2 to 4% of that in P. aeruginosa. Exogenous arginine had no effect, and there were no significant differences between argR' and argR strains of E. coli in this respect.  相似文献   

7.
The sal gene encoding Pseudomonas cepacia salicylate hydroxylase was cloned and the sal encoding Pseudomonas putida salicylate hydroxylase was subcloned into plasmid vector pRO2317 to generate recombinant plasmids pTK3 and pTK1, respectively. Both cloned genes were expressed in the host Pseudomonas aeruginosa PAO1. The parental strain can utilize catechol, a product of the salicylate hydroxylase-catalyzed reaction, but not salicylate as the sole carbon source for growth due to a natural deficiency of salicylate hydroxylase. The pTK1- or pTK3-transformed P. aeruginosa PAO1, however, can be grown on salicylate as the sole carbon source and exhibited activities for the cloned salicylate hydroxylase in crude cell lysates. In wild-type P. cepacia as well as in pTK1- or pTK3-transformed P. aeruginosa PAO1, the presence of glucose in addition to salicylate in media resulted in lower efficiencies of sal expression P. cepacia apparently can degrade salicylate via the meta cleavage pathway which, unlike the plasmid-encoded pathway in P. putida, appears to be encoded on chromosome. As revealed by DNA cross hybridizations, the P. cepacia hsd and ht genes showed significant homology with the corresponding plasmid-borne genes of P. putida but the P. cepacia sal was not homologous to the P. putida sal. Furthermore, polyclonal antibodies developed against purified P. cepacia salicylate hydroxylase inactivated the cloned P. cepacia salicylate hydroxylase but not the cloned P. putida salicylate hydroxylase in P. aeruginosa PAO1. It appears that P. cepacia and P. putida salicylate hydroxylases, being structurally distinct, were probably derived through convergent evolution.  相似文献   

8.
We have previously described two Pseudomonas aeruginosa genes, ptxR, which enhances toxA and pvc (the pyoverdine chromophore operon) expression, and ptxS, the first gene of the kgu operon for the utilization of 2-ketogluconate by P. aeruginosa. ptxS interferes with the effect of ptxR on toxA expression. In this study, we have utilized DNA hybridization experiments to determine the presence of ptxR and ptxS homologous sequences in several gram-negative bacteria. ptxR homologous sequences were detected in P. aeruginosa strains only, while ptxS homologous sequences were detected in P. aeruginosa, Pseudomonas putida, and Pseudomonas fluorescens. Using Northern blot hybridization experiments and a ptxS-lacZ fusion plasmid, we have shown that P. aeruginosa ptxR and ptxS are expressed in P. putida and P. fluorescens. Additional Northern blot hybridization experiments confirmed that ptxS is transcribed in P. putida and P. fluorescens strains that carried no plasmid. The presence of a PtxS homologue in these strains was examined by DNA-gel shift experiments. Specific gel shift bands were detected when the lysates of P. aeruginosa, P. putida, and P. fluorescens were incubated with the ptxS operator site as probe. kgu-hybridizing sequences were detected in P. putida and P. fluorescens. These results suggest that (i) ptxR is present in P. aeruginosa, while ptxS is present in P. aeruginosa, P. putida, and P. fluorescens; (ii) both ptxR and ptxS are expressed in P. putida and P fluorescens; and (iii) a PtxS homologue may exist in P. putida and P. fluorescens.  相似文献   

9.
The TOL plasmid originally isolated in Pseudomonas putida (arvilla) mt-2 was transmissible to strains of the fluorescens group of Pseudomonas, i.e., P. putida, P. fluorescens, and P. aeruginosa, except for a strain of P. aeruginosa, strain PAO. The same strain, however, could accept the plasmid when its restriction and modification abilities were lost by mutations or by growing at high temperature. In addition, the transmissibility of the TOL plasmid from strain PAO to P. putida was low when the plasmid was modified by the donor. By using P. aeruginosa PAO carrying the TOL plasmid, the stability and genetic expression of the plasmid as well as its effect on the host cell growth were examined. Thus the self-maintenance of the plasmid was found to be thermosensitive. Furthermore, the TOL plasmid inhibited the growth of strain PAO at high temperature, accompanied by the formation of some filamentous cells. These thermosensitive properties of the TOL plasmid were host dependent and not exhibited in another strain of P. aeruginosa.  相似文献   

10.
Cha M  Lee N  Kim M  Kim M  Lee S 《Bioresource technology》2008,99(7):2192-2199
A new bacterial strain isolated from activated sludge, identified as Pseudomonas aeruginosa EMS1, produced a biosurfactant when grown on acidified soybean oil as the sole carbon source. An optimum biosurfactant production of 5 g/L was obtained with the following medium composition: 2% acidified soybean oil, 0.3% NH4NO3, 0.03% KH2PO4, 0.03% K2HPO4, 0.02% MgSO4.7H2O and 0.025% CaCl2.2H2O, with shaking at 200 rpm for an incubation period of 100 h at 30 degrees C. The production of the biosurfactant was found to be a function of cell growth, with maximum production occurring during the exponential phase. Hemolysis of erythrocytes and thin-layer chromatography studies revealed that the secreted biosurfactant was rhamnolipid. To overcome the complex environmental regulation with respect to rhamnolipid biosynthesis, and to replace the opportunistic pathogen P. aeruginosa with a safe industrial strain, attempts were made to achieve rhamnolipid production in a heterologous host, Pseudomonas putida, using molecular cloning of rhlAB rhamnosyltransferase genes with the rhlRI quorum sensing system, assuming that a functional rhamnosyltransferase would catalyze the formation of rhamnosyl-6-hydroxydecanoyl-6-hydroxydecanoate (mono-rhamnolipid) in P. putida. It was shown that rhamnolipid can be produced in the heterologous strain, P. putida, when provided with the rhamnosyltransferase genes.  相似文献   

11.
The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air-liquid (A-L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments.  相似文献   

12.
13.
The effect of plasmid CAM-OCT on responses to UV irradiation was compared in Pseudomonas aeruginosa, in Pseudomonas putida, and in Pseudomonas putida mutants carrying mutations in UV response genes. CAM-OCT substantially increased both survival and mutagenesis in the two species. P. aeruginosa strains without CAM-OCT exhibited much higher UV sensitivity than did P. putida strains. UV-induced mutagenesis of plasmid-free P. putida was easily detected in three different assays (two reversion assays and one forward mutation assay), whereas UV mutagenesis of P. aeruginosa without CAM-OCT was seen only in the forward mutation assay. These results suggest major differences in DNA repair between the two species and highlight the presence of error-prone repair functions on CAM-OCT. A number of P. putida mutants carrying chromosomal mutations affecting either survival or mutagenesis after UV irradiation were isolated, and the effect of CAM-OCT on these mutants was determined. All mutations producing a UV-sensitive phenotype in P. putida were fully suppressed by the plasmid, whereas the plasmid had a more variable effect on mutagenesis mutations, suppressing some and producing no suppression of others. On the basis of the results reported here and results obtained by others with plasmids carrying UV response genes, it appears that CAM-OCT may differ either in regulation or in the number and functions of UV response genes encoded.  相似文献   

14.
Assembly of bacterial flagella is developmentally important during both planktonic cell growth and biofilm formation. Flagellar biogenesis is complex, requiring coordinated expression of over 40 genes, and normally commences during the log-to-stationary transition phase. We describe here a novel membrane-localized regulator, MorA, that controls the timing of flagellar development and affects motility, chemotaxis, and biofilm formation in Pseudomonas putida. MorA is conserved among diverse Pseudomonas species, and homologues are present in all Pseudomonas genomes sequenced thus far. In P. putida, the absence of MorA derepresses flagellar development, which leads to constitutive formation of flagella in the mutant cells in all growth phases. In Pseudomonas aeruginosa, the absence of MorA led to a reduction in biofilm formation. However, unlike the motility of P. putida, the motility of the P. aeruginosa mutants was unaffected. Our data illustrate a novel developmentally regulated sensory and signaling pathway for several properties required for virulence and ecological fitness of Pseudomonas species.  相似文献   

15.
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.  相似文献   

16.
Strains of Pseudomonas producing fluorescin but no pyocyanin or pyorubrin were studied by biochemical and antibiotic sensitivity testing. A rapid nitrate test was found to be useful in distinguishing P. aeruginosa (positive) from P. fluorescens and P. putida (both negative). A shortened gelatin test differentiated P. fluorescens (positive) from P. putida (negative). P. fluorescens and P. putida were very sensitive to low levels of kanamycin and resistant to carbenicillin, a pattern just the opposite of that obtained with P. aeruginosa.  相似文献   

17.
Pseudomonas putida PP3 carrying dehalogenases I and II and Pseudomonas aeruginosa PAU3 carrying dehalogenase I coded for by plasmid pUU2 were able to grow on 2-monochloropropionic acid (2MCPA). Neither strain utilized 2-chloropropionamide (2CPA) as a carbon or nitrogen source for growth. Mutations in both strains to 2Cpa+ phenotypes (designated P. putida PPW3 and P. aeruginosa PAU5, respectively) involved the expression of an acquired 2CPA-amidase activity. The amidase followed by dehalogenase reactions in these strains constituted a novel metabolic pathway for growth on 2CPA. P. putida PPW3 synthesized a constitutive amidase of molecular mass 59 kDa consisting of two identical subunits of 29 kDa. For those amides tested this acquired enzyme was most active against chlorinated aliphatic amides, although substrate affinities (Km) and maximum rates of activity (Vmax) were poor. P. aeruginosa PAU5 acquired a 2Cpa+ phenotype by overproducing the A-amidase normally used by this species to hydrolyse aliphatic amides. The A-amidase had only slight activity towards 2CPA. However, with constitutive synthesis the mutant grew on the chlorinated substrates. Chloroacetamide (CAA) was a toxic substrate analogue for these Pseudomonas strains. A strain resistant to CAA was isolated from P. aeruginosa PAU5 when exposed to 1-10 mM-CAA. This mutant, P. aeruginosa PAU6, synthesized an inducible A-amidase. CAA-resistance depended upon the simultaneous expression of CAA-inducible amidase and dehalogenase activities.  相似文献   

18.
In this work, we explore the potential use of the Pseudomonas putida KT2440 strain for bioremediation of naphthalene-polluted soils. Pseudomonas putida strain KT2440 thrives in naphthalene-saturated medium, establishing a complex response that activates genes coding for extrusion pumps and cellular damage repair enzymes, as well as genes involved in the oxidative stress response. The transfer of the NAH7 plasmid enables naphthalene degradation by P. putida KT2440 while alleviating the cellular stress brought about by this toxic compound, without affecting key functions necessary for survival and colonization of the rhizosphere. Pseudomonas putida KT2440(NAH7) efficiently expresses the Nah catabolic pathway in vitro and in situ, leading to the complete mineralization of [(14)C]naphthalene, measured as the evolution of (14)CO(2), while the rate of mineralization was at least 2-fold higher in the rhizosphere than in bulk soil.  相似文献   

19.
The research of lysine, ornithine and arginine decarboxylases has been made for 50 strains of fluorescent Pseudomonas (P. aeruginosa, P. fluorescens, P. putida). By thin layer chromatography, all the strains of Pseudomonas aeruginosa and the fifth of the strains of P. putida had lysine decarboxylase activity at alcaline pH (optimal pH 8) ; Pseudomonas fluorescens did not produce this decarboxylase. Arginine and ornithine decarboxylase are absent for all the strains of fluorescent Pseudomonas.  相似文献   

20.
The sulfur present in both agricultural and uncultivated soils is largely in the form of sulfonates and sulfate esters and not as free, bioavailable inorganic sulfate. Desulfurization of the former compounds in vitro has previously been studied in Pseudomonas putida, a common rhizosphere inhabitant. Survival of P. putida strains was now investigated in three sulfur-deficient Danish soils which were found to contain 60 to 70% of their sulfur in sulfonate or sulfate ester form, as determined by X-ray near-edge spectroscopy. The soil fitness of P. putida S-313 was compared with that of isogenic strains with mutations in the sftR and asfA genes (required for in vitro desulfurization of sulfate esters and arylsulfonates, respectively) and in the ssu locus (required in vitro for the desulfurization of both sulfonates and sulfate esters). asfA or sftR mutants showed significantly reduced survival compared to the parent strain in bulk soil that had been enriched with carbon and nitrogen to mimic rhizosphere conditions, but this reduced survival was not observed in the absence of these additives. In a tomato rhizosphere grown in compost, survival of sftR and ssu mutants was reduced relative to the parent strain. The results demonstrate that the ability to desulfurize sulfonates and sulfate esters is critical for survival of bacteria in the rhizosphere but less so in bulk soils outside the influence of plant roots, where carbon is the limiting nutrient for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号