首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single species of tryptophan-59 formylated cytochrome c with a half-reduction potential of 0.085 ± 0.01 V at pH 7.0 was used to study its catalytic and functional properties. The spectral properties of the modified cytochrome show that the 6th ligand position is open to reaction with azide, cyanide, and carbon monoxide. Formylated cytochrome c binds to cytochrome c depleted rat liver and pigeon heart mitochondria with the precise stoichiometry of two modified cytochrome c molecules per molecule of cytochrome a (KD of approx 0.1 μm). Formylated cytochrome c was reducible by ascorbate and was readily oxidized by cytochrome c oxidase. The apparent Km value of the oxidase for the formylated cytochrome c was six times higher than for the native cytochrome and the apparent V was smaller. Formylated cytochrome c does not restore the oxygen uptake in C-depleted mitochondria but inhibits, in a competitive manner, the oxygen uptake induced by the addition of native cytochrome c. Formylated cytochrome c was inactive in the reaction with mitochondrial NADH-cytochrome c reductase but was able to accept electrons through the microsomal NADPH-cytochrome c reductase.  相似文献   

2.
The aryl azide, 2,4-dinitro-5-fluorophenylazide, was reacted with horse heart cytochrome c to give a photoaffinity-labeled derivative of this heme protein. The modified cytochrome c, with one to two dinitroazidophenyl groups per mole of the enzyme, has a half-reduction potential the same (± 10 mV) as native cytochrome c. The dissociation constant for the modified cytochrome c from cytochrome c-depleted mitochondrial membranes and the apparent Km for the reaction with cytochrome c oxidase were each five to six times greater than the values for native cytochrome c. Irradiation of cytochrome c-depleted mitochondrial membranes supplemented with an excess of photoaffinity-labeled cytochrome c resulted in covalent binding of the derivative to the mitochondrial membranes. Fractionation of the irradiated mitochondria in the presence of detergents and salts followed by chromatography on agarose, Bio-Gel A, showed that labeled cytochrome c was bound covalently to cytochrome c oxidase in a 1:1 molar complex. The covalently linked cytochrome c-cytochrome c oxidase complex was active in mediating the electron transfer between N,N,N′,N′-tetramethyl-p-phenylenediamine/ascorbate and the oxidase.  相似文献   

3.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

4.
Summary Zygotes of the marine brown alga,Fucus serratus, have been subjected to the different modes of electric fields. 1) The result of a former study with conductive d.c. fields has been confirmed using electrostatic d.c. fields of 0.5 to 4 V/cm: the zygotes develop the cell polarity axis parallel to the imposed field with the rhizoid pole toward the cathode. 2) The frequency response to both, conductive and electrostatic, a.c. fields represents an optimum curve. The response,i.e. rhizoid formation at either or, in rare cases, both cell poles, peaks at square pulse durations,t E, of 70 to 120 ms. 3) The same frequency response appears if the pulse number is kept constant at 8s–1 by variation of the interval between the pulses,t o. Only fort oo > 200 ms,i.e. a pulse number of 3s–1 the response declines markedly. The data support our hypothesis that imposed electric fields induce cell polarityvia differential shift of the membrane potential rather than transcellular current flow. Furthermore, the given dose-response curves strikingly resemble those due to the other morphogenetically active signals: percent response consistently approximates the per cent signal intensity gradient which evokes it.  相似文献   

5.
6.
7.
8.
9.
10.
Male European and Japanese male quail have very stereotyped calls. This study examined which parameters best discriminated between individuals, and which between the two sub-species and a hybrid of the two (European father x Japanese mother). Recordings were made of several calls from individual Japanese, European and hybrid quail, from which sonograms were made and analyzed. We found that parameters describing the time structure of the call discriminated best between individuals. Time structure also showed the greatest differences between the two sub-species and the hybrid. Hybrid calls were extremely variable, individual hybrids often producing more than one call type, occasionally of both sub-species types. However, individuals could still be identified from the call parameters. In addition, we investigated responses of males to playbacks of calls from all three quail types. European and Japanese males responded most strongly, with calling, to the playbacks of the calls of their own sub-species, intermediately to playbacks of the hybrid and least to those of the other sub-species.  相似文献   

11.
12.
13.
Cytochrome c was chemically coupled to cytochrome c oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome c binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome c reaction with oxidase, binds to the same oxidase subunit as does cytochrome c, subunit IV in the gel system used.  相似文献   

14.
15.
Phospholipid peroxidation of isolated rat liver inner mitochondrial membranes induced by either ascorbate or cysteine was accompanied by a release of flavins and coenzyme Q. A straight correlation between this release and the alteration of molecular species of phosphatidylcholine and phosphatidylethanolamine containing one saturated and one unsaturated fatty acid has been found. Peroxidation induced on molecular species of phosphatidylcholine and phosphatidylethanolamine containing only unsaturated fatty acids were accompanied by losses in enzyme activities of NADH-cytochrome c reductase and succinate cytochrome c reductase.  相似文献   

16.
Electron transfer from cobaltocytochrome c to ferricytochrome c has been studied by stopped-flow kinetics. The second-order rate constant at pH 7.0, 0.1 ionic strenght, 0.2 M phosphate, and 25 degrees C is 8.3 x 103 M-1 s-1. The activation parameters obtained from measurements made between 20 and 50 degrees C are deltaHnot equal to = 2.3 kcal mol-1 and deltaSnot equal to = -33 eu. The rate constant is not significantly dependent on ionic strength; it is also relatively independent of pH between the pK values for conformation transitions. The rate diminishes at pH greater than 12. The self-exchange reaction of cobalt cytochrome c was investigated with pulsed Fourier transform 1H NMR. The rate is too slow on the 1H NMR scale; it is estimated to be less than 133 M-1 s-1. These results together with the self-exchange rates of iron cytochrome c [Gupta, R.K., Koenig, S. H., and Redfield, A. G. (1972), J. Magn. Reson. 7, 66] were analyzed by theories of Jortner and Hopfield. The theories predict the self-exchange of Cocyt c to be too slow for 1H NMR determination. The rate constant calculated by the nonadiabatic multiphonon electron-tunneling theory for the Fecyt c-Fecyt c+ and Cocyt c-Fecyt c+ electron transfers are in good agreement with experiments.  相似文献   

17.
Cytochrome c has been chemically modified by methylene blue mediated photooxidation. It is established that the methionine residues of the protein have been specifically converted to methionine sulfoxide residues. No oxidation of any other amino acid residues or the cysteine thioether bridges of the molecule occurs during the photooxidation reaction. The absorbance spectrum of methionine sulfoxide ferricytochrome c at neutrality is similar to that of the unmodified protein except for an increase in the extinction coefficient of the Soret absorbance band and for the complete loss of the ligand sensitive 695 nm absorbance band in the spectrum of the derivative. The protein remains in the low spin configuration which implies the retention of two strong field ligands. Spin state sensitive spectral titrations and model studies of heme peptides indicate that the sixth ligand is definitely not provided by a lysine residue but may be methionine-80 sulfoxide coordinated via its sulfur atom. Circular dichroism spectra indicate that the heme crevice of methionine sulfoxide ferri- and ferrocytochrome c is weakened relative to native cytochrome c. The redox potential of methionine sulfoxide cytochrome c is 184 mV which is markedly diminished from the 260 mV redox potential of native cytochrome c. The modified protein is equivalent to native cytochrome c as a substrate for cytochrome oxidase and is not autoxidizable at neutral pH but is virtually inactive with succinate-cytochrome c reductase. These results indicate that the major role of the methionine-80 in cytochrome c is to preserve a closed hydrophobic heme crevice which is essential for the maintainance of the necessary redox potential.  相似文献   

18.
Cytochrome c1 forms an active complex with cytochrome c as previously reported (Chiang, Y. L., Kaminsky, L. S., and King, T. E. (1976) J. Biol. Chem. 251, 29-36). It also forms a complex with cytochrome oxidase with heme ratio of 1:1. This cytochrome c1.oxidase complex has been purified by ammonium sulfate fractionation and is stable in media of high ionic strength (greater than 0.1 M) but dissociates as the pH deviates from neutral. The purified cytochrome c1 aggregates to an oligomer, presumably a pentamer. No agent has been found to depolymerize isolated c1 without denaturation. However, in the cytochrome c1.oxidase complex, these two cytochromes apparently were depolymerized to form smaller aggregates, if not monomeric units, as judged by sedimentation behavior. Cytochrome c1 also forms a ternary complex with cytochrome c and oxidase in the heme ratio of 1:1:1. This complex can be prepared by any of the following four methods: (i) c1 + c + oxidase: (ii) c1.c complex + oxidase; (iii) c1 + c.oxidase complex: or (iv) c + c1.oxidase complex. The mode of formation of these complexes is all from pure protein-protein interactions. Cytochrome c1 is also incorporated into phospholipid vesicles and these vesicles show about 200 molecules of phospholipid/cytochrome c1 in terms of heme. The spectrophotometric, circular dichroic, sedimentation behavior and enzymic properties of these complexes have been investigated.  相似文献   

19.
Guanidinated cytochrome c. II   总被引:2,自引:0,他引:2  
  相似文献   

20.
Import of cytochrome c into mitochondria. Cytochrome c heme lyase   总被引:16,自引:0,他引:16  
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5--10-fold by NADH greater than NADPH greater than glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号