首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.  相似文献   

10.
11.
12.
13.
14.
15.
Mobile group II introns are site-specific retroelements that use a novel mobility mechanism in which the excised intron RNA inserts directly into a DNA target site and is then reverse transcribed by the associated intron-encoded protein. Because the DNA target site is recognized primarily by base-pairing of the intron RNA with only a small number of positions recognized by the protein, it has been possible to develop group II introns into a new type of gene targeting vector ("targetron"), which can be reprogrammed to insert into desired DNA targets simply by modifying the intron RNA. Here, we used databases of retargeted Lactococcus lactis Ll.LtrB group II introns and a compilation of nucleotide frequencies at active target sites to develop an algorithm that predicts optimal Ll.LtrB intron-insertion sites and designs primers for modifying the intron to insert into those sites. In a test of the algorithm, we designed one or two targetrons to disrupt each of 28 Escherichia coli genes encoding DExH/D-box and DNA helicase-related proteins and tested for the desired disruptants by PCR screening of 100 colonies. In 21 cases, we obtained disruptions at frequencies of 1-80% without selection, and in six other cases, where disruptants were not identified in the initial PCR screen, we readily obtained specific disruptions by using the same targetrons with a retrotransposition-activated selectable marker. Only one DExH/D-box protein gene, secA, which was known to be essential, did not give viable disruptants. The apparent dispensability of DExH/D-box proteins in E.coli contrasts with the situation in yeast, where the majority of such proteins are essential. The methods developed here should permit the rapid and efficient disruption of any bacterial gene, the computational analysis provides new insight into group II intron target site recognition, and the set of E.coli DExH/D-box protein and DNA helicase disruptants should be useful for analyzing the function of these proteins.  相似文献   

16.
17.
18.
Group II introns are mobile retroelements that invade their cognate intron-minus gene in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. Previous studies of the Lactococcus lactis intron Ll.LtrB indicated that in its native host, as in Escherichia coli, retrohoming occurs by the intron RNA reverse splicing into double-stranded DNA (dsDNA) through an endonuclease-dependent pathway. However, in retrotransposition in L. lactis, the intron inserts predominantly into single-stranded DNA (ssDNA), in an endonuclease-independent manner. This work describes the retrotransposition of the Ll.LtrB intron in E. coli, using a retrotransposition indicator gene previously employed in our L. lactis studies. Unlike in L. lactis, in E. coli, Ll.LtrB retrotransposed frequently into dsDNA, and the process was dependent on the endonuclease activity of the intron-encoded protein. Further, the endonuclease-dependent insertions preferentially occurred around the origin and terminus of chromosomal DNA replication. Insertions in E. coli can also occur through an endonuclease-independent pathway, and, as in L. lactis, such events have a more random integration pattern. Together these findings show that Ll.LtrB can retrotranspose through at least two distinct mechanisms and that the host environment influences the choice of integration pathway. Additionally, growth conditions affect the insertion pattern. We propose a model in which DNA replication, compactness of the nucleoid and chromosomal localization influence target site preference.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号