首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Ligand specificity of the type I steroid receptor is apparently conferred by the activity of 11 beta-hydroxysteroid dehydrogenase. To determine the kinetic properties of this enzyme, rat liver cDNA was expressed in cultured cells using recombinant vaccinia virus. Although this enzyme catalyzes only dehydrogenation when purified from rat liver, the recombinant enzyme obtained from cell lysates catalyzed both 11 beta-dehydrogenation of corticosterone to 11-dehydrocorticosterone and the reverse 11-oxoreduction reaction. At pH 8.5, the first order rate constant Kcat/Km for dehydrogenase activity exceeded that for reductase (63 vs. 38 min-1 x 10(-4], whereas the rate constants for the two reactions were nearly equal (48 vs. 47 min-1 x 10(-4] at pH 7.0. These results are consistent with the previously determined pH optima for these activities in liver microsomes. Removal (with glucose-6-phosphate dehydrogenase) of NADP+ produced by the reductase reaction significantly increased reductase activity. Glycyrrhetinic acid, a known inhibitor of the dehydrogenase reaction, also inhibited the reductase reaction at slightly higher concentrations (50% inhibitory concentration, less than 5 nM for dehydrogenase, 10-20 nM for reductase). Partial inhibition of glycosylation with A1-tunicamycin decreased dehydrogenase activity 50% without affecting reductase activity. The data demonstrate that a single polypeptide catalyzes both dehydrogenation and reduction, although the presence of additional enzyme forms catalyzing one or the other activity has not been ruled out.  相似文献   

2.
Xylene monooxygenase of Pseudomonas putida mt-2 catalyzes the methylgroup hydroxylation of toluene and xylenes. To investigate the potential of xylene monooxygenase to catalyze multistep oxidations of one methyl group, we tested recombinant Escherichia coli expressing the monooxygenase genes xylM and xylA under the control of the alk regulatory system of Pseudomonas oleovorans Gpo1. Expression of xylene monooxygenase genes could efficiently be controlled by n-octane and dicyclopropylketone. Xylene monooxygenase was found to catalyze the oxygenation of toluene, pseudocumene, the corresponding alcohols, and the corresponding aldehydes. For all three transformations (18)O incorporation provided stong evidence for a monooxygenation type of reaction, with gem-diols as the most likely reaction intermediates during the oxygenation of benzyl alcohols to benzaldehydes. To investigate the role of benzyl alcohol dehydrogenase (XylB) in the formation of benzaldehydes, xylB was cloned behind and expressed in concert with xylMA. In comparison to E. coli expressing only xylMA, the presence of xylB lowered product formation rates and resulted in back formation of benzyl alcohol from benzaldehyde. In P. putida mt-2 XylB may prevent the formation of high concentrations of the particularly reactive benzaldehydes. In the case of high fluxes through the degradation pathways and low aldehyde concentrations, XylB may contribute to benzaldehyde formation via the energetically favorable dehydrogenation of benzyl alcohols. The results presented here characterize XylMA as an enzyme able to catalyze the multistep oxygenation of toluenes.  相似文献   

3.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

4.
The anaerobic degradation of toluene has been studied with whole cells and by measuring enzyme activities. Cultures of Pseudomonas strain K 172 were grown in mineral medium up to a cell density of 0.5 g of dry cells per liter in fed-batch culture with toluene and nitrate as the sole carbon and energy sources. A molar growth yield of 57 g of cell dry matter formed per mol toluene totally consumed was determined. The mean generation time was 24 h. The redox balance between toluene consumed (oxidation and cell material synthesis) and nitrate consumed (reduction to nitrogen gas and assimilation as NH3) was 77% of expectation if toluene was completely oxidized; this indicated that the major amount of toluene was mineralized to CO2. It was tested whether the initial reaction in anaerobic toluene degradation was a carboxylation or a dehydrogenation (anaerobic hydroxylation); the hypothetical carboxylated or hydroxylated intermediates were tested with whole cells applying the method of simultanous adaptation: cells pregrown on toluene degraded benzyl alcohol, benzaldehyde, and benzoic acid without lag, 4-hydroxybenzoate and p-cresol with a 90 min lag phase and phenylacetate after a 200 min lag phase. The cells were not at all adapted to degrade 2-methylbenzoate, 4-methylbenzoate, o-cresol, and m-cresol, nor did these compounds support growth within a few days after inoculation with cells grown on toluene. In extracts of cells anaerobically grown on toluene, benzyl alcohol dehydrogenase, benzaldehyde dehydrogenase, and benzoyl-CoA synthetase (AMP forming) activities were present. The data (1) conclusively show anaerobic growth of a pure culture on tolucne; (2) suggest that toluene is anaerobically degraded via benzoyl-CoA; (3) imply that water functions as the source of the hydroxyl group in a toluene methylhydroxylase reaction.  相似文献   

5.
The ultraviolet/visible spectrum of the pure pink-orange 2-methyleneglutarate mutase from Clostridium barkeri between 300-600 nm showed the presence of cobalamins; notably the peaks at 470 and 528 nm were indicative of oxygen-stable cob(II)alamin and adenosylcobalamin (coenzyme B12), respectively. Using the absorption coefficients of the isosbestic points at 340, 393 and 489 nm, the total cobalamin content was estimated as 3.7 +/- 0.3 mol/mol tetrameric enzyme (m = 300 kDa). Denaturation with 8 M urea in the presence of 2 mM dithiothreitol followed by gel chromatography and renaturation afforded an inactive enzyme which contained 40-50% of the initially bound cobalamin. This preparation could be reactivated to 95-100% by addition of adenosylcobalamin. The cobalamins were removed to 85% from the mutase by denaturation with 8 M urea in the presence of 1 M cyanide (pH 12) with irreversible loss of activity. 2-Methyleneglutarate mutase was inactivated by incubation with aquo-, cyano- or methylcobalamin; up to 50% of the activity was recovered by addition of adenosylcobalamin. Upon incubation of the mutase with [5'-3H]adenosylcobalamin about 30% of the total cobalamin was exchanged by the tritium-labelled cofactor without loss of activity. During aerobic catalysis the enzyme became sensitive towards oxygen which was accompanied by loss of activity and formation of aquocobalamin from adenosylcobalamin. EPR spectroscopy demonstrated the presence of 0.8 mol base-on cob(II)alamin/mol enzyme. Upon addition of 2-methyleneglutarate a second EPR signal of about equal intensity at g = 2.13 arose. The question of whether the oxygen-stable cob(II)alamin participates in catalysis or its complex with the enzyme represents an inactive form is currently under investigation.  相似文献   

6.
A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex.  相似文献   

7.
Momilactone A, a major rice diterpene phytoalexin, could be synthesized by dehydrogenation at the 3-position of 3beta-hydroxy-9beta-pimara-7,15-dien-19,6beta-olide in rice leaves. The presence of 3beta-hydroxy-9beta-pimara-7,15-dien-19,6beta-olide in UV-irradiated rice leaves was confirmed by comparing the mass spectra and retention times after a GC/MS analysis of the natural and synthetic compounds. The soluble protein fraction from UV-irradiated rice leaves showed dehydrogenase activity to convert 3beta-hydroxy-9beta-pimara-7,15-dien-19,6beta-olide into momilactone A. The enzyme required NAD+ or NADP+ as a hydrogen acceptor. The optimum pH for the reaction was 8. The Km value to 3beta-hydroxy-9beta-pimara-7,15-dien-19,6beta-olide was 36 microM when NAD+ was supplied as a cofactor at a concentration of 1 mM. 3fl-Hydroxy-9beta-pimara-7,15-dien-19,6beta-olide and its dehydrogenase activity were induced in a time-dependent manner by UV irradiation.  相似文献   

8.
The first intermediate of anaerobic toluene catabolism, (R)-benzylsuccinate, is formed by enzymic addition of the methyl group of toluene to a fumarate cosubstrate and is subsequently activated to (R)-2-benzylsuccinyl-CoA. This compound is then oxidised to benzoyl-CoA and succinyl-CoA by a specific beta-oxidation pathway. The enzyme catalysing the first oxidation step of this pathway, (R)-benzylsuccinyl-CoA dehydrogenase, is encoded by the bbsG gene in Thauera aromatica. It was functionally overproduced in Escherichia coli, purified and characterised. The enzyme is a homotetramer with a subunit size of 45 kDa and contains one FAD per subunit. It is highly specific for (R)-benzylsuccinyl-CoA and is inhibited by (S)-benzylsuccinyl-CoA. An apparent K(m) value of 110+/-10 micro M was obtained for (R)-benzylsuccinyl-CoA. The reaction product of (R)-benzylsuccinyl-CoA dehydrogenase was identified as (E)-benzylidene-succinyl-CoA by comparison with the chemically synthesised compound, which was obtained via a new synthetic procedure. (R)-Benzylsuccinyl-CoA dehydrogenase was detected as a specifically substrate-induced protein in toluene- and m-xylene-grown cells of several bacterial species, using enzyme activity and immunological detection.  相似文献   

9.
In enzyme-catalyzed reactions, the choice of solvent often has a marked effect on the reaction outcome. In this paper, it is shown that solvent effects could be explained by the ability of the solvent to act as a competitive inhibitor to the substrate. Experimentally, the effect of six solvents, 2-pentanone, 3-pentanone, 2-methyl-2-pentanol, 3-methyl-3-pentanol, 2-methylpentane and 3-methylpentane, was studied in a solid/gas reactor. As a model reaction, the CALB-catalyzed transacylation between methyl propanoate and 1-propanol, was studied. It was shown that both ketones inhibited the enzyme activity whereas the tertiary alcohols and the hydrocarbons did not. Alcohol inhibition constants, K(i)(I) were changed to "K(i)", determined in presence of 2-pentanone, 3-pentanone, and 3-methyl-3-pentanol, confirmed the marked inhibitory character of the ketones and an absence of inhibition of 3-methyl-3-pentanol. The molecular modeling study was performed on three solvents, 2-pentanone, 2-methyl-2-pentanol and 2-methyl pentane. It showed a clear inhibitory effect for the ketone and the tertiary alcohol, but no effect for the hydrocarbon. No change in enzyme conformation was seen during the simulations. The study led to the conclusion that the effect of added organic component on lipase catalyzed transacylation could be explained by the competitive inhibitory character of solvents towards the first binding substrate methyl propanoate.  相似文献   

10.
Cells of Pseudomonas putida NP, Pseudomonas species (NCIB 9816), and a Nocardia species, after growth on naphthalene as sole source of carbon and energy, contain a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme that oxidizes cis-dihydrodiols of mono- and polycyclic aromatic compounds. Similarly, cells of a strain of P. putida biotype A, when grown either on toluene or benzene vapors, were found to contain a dehydrogenase that oxidized dihydrodiols of aromatic hydrocarbons with cis stereochemistry and required NAD+ as an electron acceptor. In all these cases, no enzymatic activity was detected when trans-naphthalene dihydrodiol was used as a substrate. Purified cis-naphthalene dihydrodiol dehydrogenase was injected into rabbits to obtain antibodies. Physiocochemical and immunological properties of cis-dihydrodiol:NAD+ oxidoreductases from four different organisms were examined. Kinetic analysis showed that, in all the cases, enzymes exhibited higher affinity for cis-dihydrodiols than for NAD+ and had pH optima between 8.8 and 9.0. except in the case of the enzyme from Nocarida sp., which showed maximum activity at pH 8.4. Molecular-weight determination of the dehydrogenases from the four different organisms by gel filtration on a Sephadex G-200 column gave values ranging from 92,000 for the enzyme from Nocardia sp. to 160,000 for that from P. putida biotype A. All the dehydrogenases, except the one from Nocardia sp., exhibited immunological cross-reaction with the antibodies prepared against the enzyme purified from P. putida NP.  相似文献   

11.
An enzyme assay was developed to determine the activities of methyl chloride dehalogenase and O-demethylase of the homoacetogen strain MC. The formation of methyl tetrahydrofolate from tetrahydrofolate and methyl chloride or from tetrahydrofolate and vanillate was coupled to the oxidation of methyl tetrahydrofolate to methylene tetrahydrofolate mediated by methylene tetrahydrofolate reductase purified from Peptostreptococcus productus (strain Marburg) and to the subsequent oxidation of methylene tetrahydrofolate to methenyl tetrahydrofolate catalyzed by methylene tetrahydrofolate dehydrogenase purified from the same organism. To drive the endergonic methyl tetrahydrofolate oxidation with NAD+ as an electron acceptor, the NADH formed in this reaction was reoxidized in the exergonic lactate dehydrogenase reaction. The formation of NADPH and methenyl tetrahydrofolate in the methylene tetrahydrofolate dehydrogenase reaction was followed photometrically at 350 nm; ε350 was about 29.5 mM–1cm–1 (pH 6.5). Using the coupled enzyme assay, the cofactor requirements, the apparent kinetic parameters, the pH and temperature optima of both enzymes, and the effect of inhibitors were determined. The activity of methyl chloride dehalogenase and of O-demethylase was dependent on the presence of ATP; arsenate severely inhibited both enzyme activities in the absence of ATP. The coupled enzyme assay described allows purification and characterization of methyl chloride dehalogenase and O-demethylase and is also appropriate for the enzymatic determination of methyl tetrahydrofolate. Received: 2 August 1995 / Accepted: 28 September 1995  相似文献   

12.
Variations of the dehydrogenation enzyme activity (succinate dehydrogenase, pyruvate dehydrogenase, lactate dehydrogenase) in the heart muscle, liver and brain of root voles (Microtus oeconomus Pall.) and their progeny associated with additional stress effects (chronic low-level gamma-irradiation, short-term exposure to cold) have been studied. Root voles (parents) were caught in the areas with a normal and high-level natural radioactivity in the Republic of Komi. It has been revealed that the direction of shifts of the dehydrogenation enzyme activity in response to the factors of the physical nature is determined by the initial level of the oxidation process in tissues of root voles and their progeny that haven't been subjected to these actions. The reaction of root voles and their progeny (1-3 generations) from the radium zone has lower reserve functional possibilities in relation to the additional exposure as compared with the animals from the control zone. In some cases, chronic low-level irradiation and short-term cooling lead to leveling of differences between groups of animals which initially varied from each other in biochemical indexes.  相似文献   

13.
Kinetics of monoamine oxidase (MAO) catalyzed dehydrogenation of neurotropic analogues of biogenic monoamines in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine series were studied. It is shown that methyl substitution in the phenyl ring increases significantly the enzyme-substrate affinity, but the substituent's effect on the catalytic stage largely depends upon its position in the ring. o- and m-Methyl derivatives were preferably oxidized by B type of MAO, whereas p-total derivative was oxidized by B type as well as by A type of the enzyme. In the course of the oxidation reactions MAO is irreversibly inhibited by the dihydropyridinium product of the reaction, particularly in case of methyl derivatives. The significant and structure-dependent inhibition of the enzyme might be responsible for the differences in neurotropic properties of the above substrate homologues.  相似文献   

14.
Five analogs of adenosylcobalamin modified in the adenine moiety of the Co beta ligand were synthesized and tested for coenzymic function with diol dehydrase of Klebsiella pneumoniae ATCC 8724. 1-Deaza and 3-deaza analogs of adenosylcobalamin were active as coenzyme, whereas 7-deaza and N6,N6-dimethyl derivatives and guanosylcobalamin did not show detectable coenzymic activity. 7-Deaza and N6,N6-dimethyl analogs acted as strong competitive inhibitors with respect to adenosylcobalamin. The formation of cob(II)alamin as intermediate in the catalytic reaction was spectroscopically observed with catalytically active complexes of the enzyme with 1-deaza and 3-deaza analogs in the presence of 1,2-propanediol, but not with complexes with the inactive analogs. Oxygen sensitivity of the enzyme-analog complexes suggests that the carbon-cobalt bond of 1-deaza and 3-deaza analogs becomes activated by the enzyme even in the absence of substrate. These results indicate that the importance of the nitrogen atoms in the adenine moiety of the coenzyme for manifestation of catalytic function and for activation of the carbon-cobalt bond decreases in the following order: N-7 greater than 6-NH2 greater than N-3 greater than N-1. The dissociation constant for 5'-deoxyadenosine determined by equilibrium dialysis at 37 degrees C was about 23 microM.  相似文献   

15.
A simple three-step method was established for the purification of NAD(P)H dehydrogenase (quinone) ('DT-diaphorase', EC 1.6.99.2) from rat liver by affinity chromatography with a recovery of above 50%. The final enzyme preparation was purified about 750-fold and was electrophoretically homogeneous. Gel filtration showed that the enzyme had a mol.wt. of about 55 000, and one molecule of FAD was found per 55 000 mol.wt. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave a mol.wt. of about 27 000. Two N-terminal amino acids, asparagine/aspartic acid and glutamine/glutamic acid, were found in about equal yield, suggesting the presence of two non-identical polypeptide chains in the enzyme. NAD(P)H dehydrogenase was selectively removed by this affinity-chromatographic method from a microsomal carboxylation system. The system, which was solubilized by detergent and is dependent on vitamin K (2-methyl-3-phytyl-1,4-naphthaquinone or analogues with other side chains), lost its activity on the removal of the enzyme. The activity can be completely restored to the system by adding purified cytoplasmic NAD(P)H dehydrogenase or by using the quinol form of vitamin K1 (2-methyl-3-phytyl-1,4-naphthaquinol).  相似文献   

16.
A methyltransferase which utilizes 3-hydroxyanthranilic acid (HAA) as a substrate was identified in detergent-treated extracts of the bacterium Streptomyces antibioticus. The enzyme catalyzes the transfer of methyl groups from [14C]S-adenosylmethionine to HAA, but does not catalyze the methylation of 3-hydroxy-DL-kynurenine. Enzyme, substrate, time, and pH dependencies for the methyl transfer reaction were examined. Reaction products obtained from scaled-up reaction mixtures were fractionated by chromatography on Dowex 1, and the Dowex 1 fractions were examined by paper and thin-layer chromatography. One Dowex fraction was shown to contain a radioactive product with the chromatographic properties of 4-methyl-3-hydroxyanthranilic acid (MHA), a known intermediate in the biosynthesis of actinomycin. Available evidence indicates that the conversion of HAA to MHA is an early step in the biosynthesis of actinomycin by S. antibioticus and other actinomycin-producing streptomycetes.  相似文献   

17.
Although the presence of an enzyme that catalyzes beta-decarboxylating dehydrogenation of homoisocitrate to synthesize 2-oxoadipate has been postulated in the lysine biosynthesis pathway through alpha-aminoadipate (AAA), the enzyme has not yet been analyzed at all, because no gene encoding the enzyme has been identified until recently. A gene encoding a protein with a significant amino acid sequence identity to both isocitrate dehydrogenase and 3-isopropylmalate dehydrogenase was cloned from Thermus thermophilus HB27. The gene product produced in recombinant Escherichia coli cells demonstrated homoisocitrate dehydrogenase (HICDH) activity. A knockout mutant of the gene showed an AAA-auxotrophic phenotype, indicating that the gene product is involved in lysine biosynthesis through AAA. We therefore named this gene hicdh. HICDH, the gene product, did not catalyze the conversion of 3-isopropylmalate to 2-oxoisocaproate, a leucine biosynthetic reaction, but it did recognize isocitrate, a related compound in the tricarboxylic acid cycle, as well as homoisocitrate as a substrate. It is of interest that HICDH catalyzes the reaction with isocitrate about 20 times more efficiently than the reaction with the putative native substrate, homoisocitrate. The broad specificity and possible dual function suggest that this enzyme represents a key link in the evolution of the pathways utilizing citrate derivatives. Site-directed mutagenesis study reveals that replacement of Arg(85) with Val in HICDH causes complete loss of activity with isocitrate but significant activity with 3-isopropylmalate and retains activity with homoisocitrate. These results indicate that Arg(85) is a key residue for both substrate specificity and evolution of beta-decarboxylating dehydrogenases.  相似文献   

18.
L-Asparaginase shows antileukemic activity and is generally administered in the body in combination with other anticancer drugs like pyrimidine derivatives. In the present study, L-asparaginase was purified from a bacteria Erwinia carotovora and the effect of a dihydropyrimidine derivative (1-amino-6-methyl-4-phenyl-2-thioxo, 1,2,3,4-tetrahydropyrimidine-5-carboxylic acid methyl ester) was studied on the kinetic parameters Km and Vmax of the enzyme using L-asparagine as substrate. The enzyme had optimum activity at pH 8.6 and temperature 35 degrees C, both in the absence and presence of pyrimidine derivative and substrate saturation concentration at 6 mg/ml. For the enzymatic reaction in the absence and presence (1 to 3 mg/ml) of dihydropyrimidine derivative, Km values were 7.14, 5.26, 4.0, and 5.22 M, and Vmax values were 0.05, 0.035, 0.027 and 0.021 mg/ml/min, respectively. The kinetic values suggested that activity of enzyme was enhanced in the presence of dihydropyrimidine derivative.  相似文献   

19.
The naphthalene dioxygenase (NDO) system catalyzes the first step in the degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The enzyme has a broad substrate range and catalyzes several types of reactions including cis-dihydroxylation, monooxygenation, and desaturation. Substitution of valine or leucine at Phe-352 near the active site iron in the alpha subunit of NDO altered the stereochemistry of naphthalene cis-dihydrodiol formed from naphthalene and also changed the region of oxidation of biphenyl and phenanthrene. In this study, we replaced Phe-352 with glycine, alanine, isoleucine, threonine, tryptophan, and tyrosine and determined the activity with naphthalene, biphenyl, and phenanthrene as substrates. NDO variants F352W and F352Y were marginally active with all substrates tested. F352G and F352A had reduced but significant activity, and F352I, F352T, F352V, and F352L had nearly wild-type activities with respect to naphthalene oxidation. All active enzymes had altered regioselectivity with biphenyl and phenanthrene. In addition, the F352V and F352T variants formed the opposite enantiomer of biphenyl cis-3,4-dihydrodiol [77 and 60% (-)-(3S,4R), respectively] to that formed by wild-type NDO [>98% (+)-(3R,4S)]. The F352V mutant enzyme also formed the opposite enantiomer of phenanthrene cis-1,2-dihydrodiol from phenanthrene to that formed by biphenyl dioxygenase from Sphingomonas yanoikuyae B8/36. A recombinant Escherichia coli strain expressing the F352V variant of NDO and the enantioselective toluene cis-dihydrodiol dehydrogenase from Pseudomonas putida F1 was used to produce enantiomerically pure (-)-biphenyl cis-(3S,4R)-dihydrodiol and (-)-phenanthrene cis-(1S,2R)-dihydrodiol from biphenyl and phenanthrene, respectively.  相似文献   

20.
We have been working to develop an enzymatic assay for the alcohol 2-methyl-3-buten-2-ol (232-MB), which is produced and emitted by certain pines. To this end we have isolated the soil bacterium Pseudomonas putida MB-1, which uses 232-MB as a sole carbon source. Strain MB-1 contains inducible 3-methyl-2-buten-1-ol (321-MB) and 3-methyl-2-buten-1-al dehydrogenases, suggesting that 232-MB is metabolized by isomerization to 321-MB followed by oxidation. 321-MB dehydrogenase was purified to near-homogeneity and found to be a tetramer (151 kDa) with a subunit mass of 37,700 Da. It catalyzes NAD+-dependent, reversible oxidation of 321-MB to 3-methyl-2-buten-1-al. The optimum pH for the oxidation reaction was 10.0, while that for the reduction reaction was 5.4. 321-MB dehydrogenase oxidized a wide variety of aliphatic and aromatic alcohols but exhibited the highest catalytic specificity with allylic or benzylic substrates, including 321-MB, 3-chloro-2-buten-1-ol, and 3-aminobenzyl alcohol. The N-terminal sequence of the enzyme contained a region of 64% identity with the TOL plasmid-encoded benzyl alcohol dehydrogenase of P. putida. The latter enzyme and the chromosomally encoded benzyl alcohol dehydrogenase of Acinetobacter calcoaceticus were also found to catalyze 321-MB oxidation. These findings suggest that 321-MB dehydrogenase and other bacterial benzyl alcohol dehydrogenases are broad-specificity allylic and benzylic alcohol dehydrogenases that, in conjunction with a 232-MB isomerase, might be useful in an enzyme-linked assay for 232-MB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号