首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of arachidonic acid was studied in the fungus Mortierella alpina using an inexpensive medium. Glucose derived from maize starch hydrolysate was the sole carbon source and defatted soybean meal and sodium nitrate were the nitrogen sources. Optimal arachidonic acid yield (1.47 g l-1) was observed at a glucose concentration of 100 g l-1. Various treatments of defatted soybean meal to extract soluble nitrogen nutrients were evaluated. Alkali extract was the most effective for arachidonic acid production. A mixture of soybean alkali-extract protein and sodium nitrate was an excellent nitrogen source for fungal growth, lipid accumulation, and arachidonic acid production. A maximum yield of 1.87 g arachidonic acid l-1 was obtained with a soybean protein concentration of 4.6 g l-1 and a sodium nitrate concentration of 2.3 g l-1. Electronic Publication  相似文献   

2.
Glycerol at 10–20 g l–1 increased clavulanic acid production by Streptomyces clavuligerus in shake-flask culture. The biosynthesis of clavulanic acid continued for longer by feeding glycerol and production increased to 250 mg l–1 compared with 115 mg l–1 without feeding. In fermenter batch culture, degradation of clavulanic acid began after 72 h. With glycerol feeding in fed-batch culture, clavulanic acid production was not only increased further to about 280 mg l–1 but also remained stable up to 130 h.  相似文献   

3.
Defatted soybean extract was fractionated into protein fractions and low molecular weight fractions with gel filtration. NAD-dependent aldehyde dehydrogenase from bovine liver mitochondria and from yeast was found to oxidize aldehyde in both fractions. These enzymes, therefore, were used to determine the quantity of aldehyde. When the protein fraction obtained by gel filtration was subjected to gel filtration again, aldehyde was recovered in the protein fractions. The level of aldehyde in the protein fractions was unchanged before and after digestion of the protein with pepsin. When the soybean extract was incubated beforehand with aldehyde dehydrogenase and NAD+ and the subjected to gel filtration, no aldehyde was detected in the protein fractions. These results indicate that aldehyde dehydrogenase acts on the soybean protein-bound aldehyde. Alcohol dehydrogenase from horse liver in the presence of NADH did not convert the bound aldehyde to alcohol.

A large portion of the aldehyde in the extract was separated from the protein by acid precipitation of the protein. Aldehyde dehydrogenase acts on the aldehyde remaining in the protein after acid precipitation. Thus acid precipitation helps to save NAD+ required for complete removal of aldehyde from the soybean protein by aldehyde dehydrogenase.  相似文献   

4.
This work was aimed at producing inulinase by solid-state fermentation of sugarcane bagasse, using factorial design to identify the effect of corn steep liquor (CSL) and soybean bran concentration, particle size of bagasse and size of inoculum. Maximum inulinase activity achieved was 250 U per g of dry substrate (gds) at 20% (w/w) of CSL, 5% (w/w) of soybean bran, 1 × 1010 cells mL−1 and particle size of bagasse in the range 9/32 mesh. The use of soybean bran decreased the time to reach maximum activity from 96 to 24 h and the maximum productivity achieved was 8.87 U gds−1 h−1. The maximum activity was obtained at pH 5.0 and 55.0°C. Within the investigated range, the enzyme extract was more thermostable at 50.0°C, showing a D-value of 123.1 h and deactivation energy of 343.9 kJ gmol−1. The extract showed highest stability from pH 4.5 to 4.8. Apparent K m and V max are 7.1 mM and 17.79 M min−1, respectively.  相似文献   

5.
该研究基于大豆基因组数据库,根据拟南芥ABI4蛋白的氨基酸序列,经比对分析,获得了大豆中的2个GmABI4基因,分别命名为GmABI4-1(GenBank登录号为XM_014766551.1)和GmABI4-2(GenBank登录号为NM_001249003)。TMHMM软件和系统进化转录分析表明,这2个基因编码的蛋白均不具有信号肽,二级结构主要以无规则卷曲和延伸链为主;进化树分析表明,大豆GmABI4和野生大豆亲缘关系较近。荧光定量PCR分析表明,GmABI4-1与GmABI4-2基因在大豆种子与豆荚中的表达量均高于根、茎、叶、花等其他组织,推测可能与调控大豆种子生命活动相关。  相似文献   

6.
Effects of the enzymes in Actinomucor elegans extract and the enzyme Alcalase 2.4L on debittering the soybean protein hydrolysates were investigated. When the protein was treated only with the latter, a strong bitterness formed; but it decreased if the protein was treated with both the enzymes. The more the enzymes were used, weaker was the bitterness tasted. SDS-PAGE profile and ESI-MS spectrum of the hydrolysates evidenced that the Alcalase could convert the protein into peptides rapidly, while the enzymes in the A. elegans extract were able to further degrade some peptides which were difficult or unable to be hydrolyzed by the Alcalase. Further systematic analysis of the peptidases showed that the Alcalase exhibited a significant endopeptidase activity towards NBZ-Phe-pNA substrate (p < 0.01), whereas many exopeptidases in the A. elegans extract had the carboxypeptidase activity towards N-CBZ-Ile-Leu (p < 0.01). It is concluded that those exopeptidases presented in the A. elegans extract can benefit by decreasing the bitterness of the soybean protein hydroysate. They are also capable of being used with the Alcalase in a single-step enzymatic reaction to prepare the bitterless protein hydrolysate, which may be an efficient application for food industry.  相似文献   

7.
Production of clavulanic acid (CA) by Streptomyces clavuligerus ATCC 27064 in shake-flask culture (28 °C, 250 rev min–1) was evaluated, with media containing different types and concentrations of edible vegetable oil. Firstly, four media based on those reported in the literature were examined. The medium containing soybean oil and starch as carbon and energy source gave the best production results. This medium, with the starch replaced by glycerol, and with various soybean oil concentrations (16, 23 and 30 g l–1) was utilized to further investigate CA production. Medium containing 23 g l–1 led to the highest CA productivity (722 mg l–1 in 120 h) and that one containing 30 g l–1 gave the highest CA titre (753 mg l–1 in 130 h). Also, substitution of corn and sunflower edible oils furnished similarly good results in terms of CA titre and productivity. It can be concluded that easily available vegetable oil is a very promising substrate for CA production, since it is converted slowly to glycerol and fatty acids, which are the main carbon and energy source for the microorganism.  相似文献   

8.
9.
The effect of the nitrogen source in the production medium on the level of clavulanic acid production by Streptomyces clavuligerus has been investigated. Batch cultures using two types of synthetic culture medium and two types of complex culture medium containing soybean derivatives were employed. To allow comparison of the various media, all of them were formulated with 4.0 g total nitrogen/l. It was observed that the production of clavulanic acid using synthetic medium reached values slightly greater than those usually found in the literature. However, in trials with complex media, it was found that when Samprosoy 90NB (protein extract of soybean) was utilized, production of clavulanic acid went up to 920 mg/l, twice as high as when soy meal was used, and notably higher than values reported in the literature (300–500 mg/l) for complex medium.  相似文献   

10.
The rate-limiting step in the pathway for lysine synthesis in plants is catalyzed by the enzyme dihydrodipicolinate synthase (DS). We have cloned the portion of the soybean (Glycine max cv. Century) DapA cDNA that encodes the mature DS protein. Expression of the cloned soybean cDNA as a lacZ fusion protein was selected in a dapA - Escherichia coli auxotroph. The DS activity of the fusion protein was characterized in E. coli extracts. The DS activity of the fusion protein was inhibited by lysine concentrations that also inhibited native soybean DS, while E. coli DS activity was much less sensitive to inhibition by lysine.  相似文献   

11.
The terminal step of soybean cysteine synthesis is catalyzed by O-acetylserine(thiol)lyase (OAS-TL, EC 2.5.1.47). In this study, we isolated and characterized an OAS-TL gene from a wild soybean material (designated as GsOAS-TL1). GsOAS-TL1 cDNA sequence showed strict conservation at both nucleotide and amino acid levels compared with that from cultivated soybean. Genomic structure analysis of GsOAS-TL1 indicated that it contained 10 exons and 9 introns in the coding region with conserved exon sizes and intron locations compared with Arabidopsis thaliana OAS-TL-like genes. Among the complete GsOAS-TL1 cDNA and three part-deletion fragments, only expression of the full-length cDNA could rescue the NK3 cys Escherichia coli auxotroph, which was coherent with the assayed enzyme activity of purified fusion proteins. For RT-PCR analysis in different wild soybean tissues, GsOAS-TL1 showed lower expression in roots and developing seeds, whereas total OAS-TL activity of corresponding tissues showed significantly higher level in seeds than other tissues. To our knowledge, this is the first report on cloning and characterization of an OAS-TL gene from wild soybean. Our results are informative to further elucidate the function and evolution of OAS-TL in soybean.  相似文献   

12.
Enterotoxigenic Escherichia coli (ETEC) cause acute diarrhea in humans and farm animals, and can be fatal if the host is left untreated. As a potential alternative to traditional needle vaccination of cattle, we investigated the feasibility of expressing the major K99 fimbrial subunit, FanC, in soybean (Glycine max) for use as an edible subunit vaccine. As a first step in this developmental process, a synthetic version of fanC was optimized for expression in the cytosol and transferred to soybean via Agrobacterium-mediated transformation. Western analysis of T0 events revealed the presence of a peptide with the expected mobility for FanC in transgenic protein extracts, and immunofluorescense confirmed localization to the cytosol. Two T0 lines, which accumulated FanC to levels near 0.5% of total soluble protein, were chosen for further molecular characterization in the T1 and T2 generations. Mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing synthetic FanC developed significant antibody titers against bacterially derived FanC and produced antigen-specific CD4+ T lymphocytes, demonstrating the ability of transgenic FanC to function as an immunogen. These experiments are the first to demonstrate the expression and immunogenicity of a model subunit antigen in the soybean system, and mark the first steps toward the development of a K99 edible vaccine to protect against ETEC.  相似文献   

13.
In order to obtain high productivity of clavulanic acid, a newly-introduced carrier, polyurethane pellet (PUP) Z97-020 was used for the immobilization process. In a stirred-tank bioreactor, batch cultivation by Streptomyces clavuligerus KK immobilized on PUP Z97-020 gave about 3100 mg of clavulanic acid per litre, representing an increase of 200% in productivity compared with that by fed-batch cultivation of free cells (1500 mg/l). However, the clavulanic acid produced rapidly decomposed due to the pH change during batch cultivation. Fed-batch cultivation by immobilized S. clavuligerus KK gave an excellent level of clavulanic acid up to 3250 mg/l, a productivity increase of 220% compared with that by fed-batch cultivation of free cells. These results suggest that immobilization with PUP Z97-020 is a more effective process for the production of clavulanic acid and that the maintenance of pH by fed-batch cultivation with glycerol as a limiting substrate prevents the clavulanic acid from decomposing during the fermentation.  相似文献   

14.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for soybean [Glycine max (L.) Merrill] based on the examinations of several factors affecting plant transformation efficiency. Increased transformation efficiencies were obtained when the soybean cotyledonary node were inoculated with the Agrobacterium inoculum added with 0.02% (v/v) surfactant (Silwet L-77). The applications of Silwet L-77 (0.02%) during infection and l-cysteine (600 mg l−1) during co-cultivation resulted in more significantly improved transformation efficiency than each of the two factors alone. The optimized temperature for infected explant co-cultivation was 22°C. Regenerated transgenic shoots were selected and produced more efficiently with the modified selection scheme (initiation on shoot induction medium without hygromycin for 7 days, with 3 mg l−1 hygromycin for 10 days, 5 mg l−1 hygromycin for another 10 days, and elongation on shoot elongation medium with 8 mg l−1 hygromycin). Using the optimized system, we obtained 145 morphologically normal and fertile independent transgenic plants in five important Chinese soybean varieties. The transformation efficacies ranged from 3.8 to 11.7%. Stable integration, expression and inheritance of the transgenes were confirmed by molecular and genetic analysis. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This optimized transformation system should be employed for efficient Agrobacterium-mediated soybean gene transformation.  相似文献   

15.
Biosynthetically directed fractional 13C labeling, a popular methodology of metabolic flux analysis, involves culture on a mixture of 13C and 12C substrates and preparation a ‘metabolic flux analyte’ (typically protein hydrolysate) from the biomass. Metabolic flux analytes prepared from complex eukaryotes may contain additional compounds than those prepared from microorganisms. We report the presence of such compounds (hexose hydrolysis products) in a plant metabolic flux analyte (acid hydrolyzed protein from soybean embryos). We designed NMR experiments to systematically identify these compounds, and found that they were levulinic acid (LVA; major) and hydroxyacetone (HyA; minor). These acid hydrolysis products of hexoses (glucose and mannose) were generated during acid hydrolysis of glycosylating sugars (glucosamine and mannose) associated with soybean embryo protein. Analysis of LVA by two-dimensional [13C, 1H] NMR and measurement of its J-coupling constants revealed long-range coupling between atoms C3 and C5, which enables LVA to provide more isotopomer information than its precursor hexose. Furthermore, we found that LVA and HyA preserve the isotopomeric composition of the metabolic hexose from which they are derived. An important consequence of these results is that comparison of LVA and HyA isotopomers from two separate metabolic flux analytes (protein hydrolysate and starch hydrolysate) from the same plant tissue can distinguish between parallel glycolysis and pentose phosphate pathways in different subcellular compartments.  相似文献   

16.
Summary Callus cultures of Adhatoda zeylanica Medicus were established from leaf and petiole explants. Accumulation of a bioactive pyrroloquinazoline alkaloid, vasicine, in callus cultures was detected and confirmed by thin layer chromatography, electron-ionization mass spectra, 13C NMR and high-pressure liquid chromatography analysis. The mass of vasicine obtained from leaf-derived callus cultures was found as 188 and this is comparable to that of the authentic sample. The retention time for leaf-derived extract was 10.065 and for the petiole-derived extract was 9.78 (authentic sample had 9.6 retention time) on high-performance liquid chromatography. The mass and NMR spectra were compared with the spectra obtained from the authentic sample of vasicine. Different growth regulators greatly influenced the growth of callus cultures. The accumulation of vasicine was more in leaf-derived callus grown on Murashige and Skoog (MS) medium with 2.3 μM kinetin, and 4.5 μM 2,4-dichlorophenoxyacetic acid. This is the first report on in vitro production of a pharmacologically important compound vasicine and its characterization by mass spectrometry and 13C NMR studies from callus cultures of Adhatoda zeylanica.  相似文献   

17.
Summary A transient increase in rosmarinic acid (RA) content in cultured cells of Lithospermum erythrorhizon was observed after addition of yeast extract (YE) to the suspension cultures, reaching a maximum at 24 hr. The highest increase of the RA content (2.5-fold) was obtained when 6-day-old cells in the exponential growth phase were treated with YE. Preceding the induced RA accumulation, phenylalanine ammonia-lyase (PAL) activity increased rapidly, whereas tyrosine aminotransferase (TAT) activity was largely unaffected by the treatment. The incorporation of both 14C-phenylalanine and 14C-tyrosine into RA was enhanced in the YE-treated cells, consistent with increased synthesis of the ester.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - PAL phenylalanine ammonia-lyase - TAT tyrosine aminotransferase - RA rosmarinic acid - YE yeast extract  相似文献   

18.
Two relatively rare fatty acids, γ-linolenic acid (GLA) and stearidonic acid (STA), have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion efficiency in animals to eicosapentaenoic acid when compared with the more widely consumed omega-3 fatty acid, α-linolenic acid (ALA), present in most vegetable oils. Exploiting the wealth of information currently available on in planta oil biosynthesis and coupling this information with the tool of genetic engineering it is now feasible to deliberately perturb fatty acid pools to generate unique oils in commodity crops. In an attempt to maximize the STA content of soybean oil, a borage Δ6 desaturase and an Arabidopsis Δ15 desaturase were pyramided by either sexual crossing of transgenic events, re-transformation of a Δ6 desaturase event with the Δ15 desaturase or co-transformation of both desaturases. Expression of both desaturases in this study was under the control of the seed-specific soybean β-conglycinin promoter. Soybean events that carried only the Δ15 desaturase possessed a significant elevation of ALA content, while events with both desaturases displayed a relative STA abundance greater than 29%, creating a soybean with omega-3 fatty acids representing over 60% of the fatty acid profile. Analyses of the membrane lipids in a subset of the transgenic events suggest that soybean seeds compensate for enhanced production of polyunsaturated fatty acids by increasing the relative content of palmitic acid in phosphatidylcholine and other phospholipids.  相似文献   

19.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is the most important pathogen in soybean production worldwide and causes substantial yield losses. An apparent narrow genetic base of SCN resistance was observed in current elite soybean cultivars, and searching for novel SCN resistance genes as well as novel resistance sources rather than focusing on the two important genes rhg1 and Rhg4 has become another major objective in soybean research. In the present paper we report a 1,477 bp Hs1 pro-1 homolog, named GmHs1 pro-1 . This gene was cloned from soybean variety Wenfeng 7 based on information for Hs1 pro-1 , a beet cyst nematode resistance gene in sugar beet. It has two domains, Hs1pro-1_N and Hs1pro-1_C, both of which are believed to confer resistance to nematodes. Of the 1,477 bp sequence in GmHs1 pro-1 , an open reading frame of 1,314 bp, encoding a protein with 437 amino acids, was flanked by a 5′-untranslated region of 27 bp and a 3′-untranslated region of 135 bp. Fourteen single-nucleotide polymorphisms (SNPs) were observed in 44 soybean accessions including 23 wild soybeans, 8 landraces, and 13 soybean varieties (or lines), among which 5 in wild soybeans and 3 in landrace accessions were unique. Sequence diversity analysis on the 44 soybean accessions showed π = 0.00168 and θ = 0.00218 for GmHs1 pro-1 ; landraces had the highest diversity, followed by wild soybeans, with varieties (or lines) having the lowest. Although we did not detect a significant effect of selection on GmHs1 pro-1 in the three populations, sequence diversity, unique SNPs, and phylogenetic analysis indicated a slight domestication bottleneck and an intensive selection bottleneck. High sequence diversity, more unique SNPs, and broader representation across the phylogenetic tree in wild soybeans and landraces indicated that wild collections and landrace accessions are invaluable germplasm for broadening the genetic base of elite soybean varieties resistant to SCN. C. Yuan and G. Zhou contributed to this paper equally.  相似文献   

20.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号