首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To examine whether Aeromonas bacteria isolated from municipally treated water had virulence factor genes. METHODS AND RESULTS: A polymerase chain reaction-based genetic characterization determined the presence of six virulence factors genes, elastase (ahyB), lipase (pla/lip/lipH3/alp-1) flagella A and B (flaA and flaB), the enterotoxins, act, alt and ast, in these isolates. New primer sets were designed for all the target genes, except for act. The genes were present in 88% (ahyB), 88% (lip), 59% (fla), 43% (alt), 70% (act) and 30% (ast) of the strains, respectively. Of the 205 isolates tested only one isolate had all the virulence genes. There was a variety of combinations of virulence factors within different strains of the same species. However, a dominant strain having the same set of virulence factors, was usually isolated from any given tap in different rounds of sampling from a single tap. CONCLUSIONS: These results show that Aeromonas bacteria found in drinking water possess a wide variety of virulence-related genes and suggest the importance of examining as many isolates as possible in order to better understand the health risk these bacteria may present. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents a rapid method for characterizing the virulence factors of Aeromonas bacteria and suggests that municipally treated drinking water is a source of potentially pathogenic Aeromonas bacteria.  相似文献   

2.
Two tandemly located flagellin genes, flaA and flaB, with 79% nucleotide sequence identity were identified in Aeromonas salmonicida A449. The fla genes are conserved in typical and atypical strains of A. salmonicida, and they display significant divergence at the nucleotide level from the fla genes of the motile species Aeromonas hydrophila and Aeromonas veronii biotype sobria. flaA and flaB encode unprocessed flagellins with predicted Mrs of 32,351 and 32,056, respectively. When cloned under the control of the Ptac promoter, flaB was highly expressed when induced in Escherichia coli DH5alpha, and the FlaB protein was detectable even in the uninduced state. In flaA clones containing intact upstream sequence, FlaA was barely detectable when uninduced and poorly expressed on induction. The A. salmonicida flagellins are antigenically cross-reactive with the A. hydrophila TF7 flagellin(s) and evolutionarily closely related to the flagellins of Pseudomonas aeruginosa and Vibrio anguillarum. Electron microscopy showed that A. salmonicida A449 expresses unsheathed polar flagella at an extremely low frequency under normal laboratory growth conditions, suggesting the presence of a full complement of genes whose products are required to make flagella; e.g., immediately downstream of flaA and flaB are open reading frames encoding FlaG and FlaH homologs.  相似文献   

3.
Mesophilic Aeromonas spp. constitutively express a single polar flagellum that helps the bacteria move to more favorable environments and is an important virulence and colonization factor. Certain strains can also produce multiple lateral flagella in semisolid media or over surfaces. We have previously reported 16 genes (flgN to flgL) that constitute region 1 of the Aeromonas hydrophila AH-3 polar flagellum biogenesis gene clusters. We identified 39 new polar flagellum genes distributed in four noncontiguous chromosome regions (regions 2 to 5). Region 2 contained six genes (flaA to maf-1), including a modification accessory factor gene (maf-1) that has not been previously reported and is thought to be involved in glycosylation of polar flagellum filament. Region 3 contained 29 genes (fliE to orf29), most of which are involved in flagellum basal body formation and chemotaxis. Region 4 contained a single gene involved in the motor stator formation (motX), and region 5 contained the three master regulatory genes for the A. hydrophila polar flagella (flrA to flrC). Mutations in the flaH, maf-1, fliM, flhA, fliA, and flrC genes, as well as the double mutant flaA flaB, all caused loss of polar flagella and reduction in adherence and biofilm formation. A defined mutation in the pomB stator gene did not affect polar flagellum motility, in contrast to the motX mutant, which was unable to swim even though it expressed a polar flagellum. Mutations in all of these genes did not affect lateral flagellum synthesis or swarming motility, showing that both A. hydrophila flagellum systems are entirely distinct.  相似文献   

4.
Lateral Flagella and Swarming Motility in Aeromonas Species   总被引:2,自引:0,他引:2       下载免费PDF全文
Swarming motility, a flagellum-dependent behavior that allows bacteria to move over solid surfaces, has been implicated in biofilm formation and bacterial virulence. In this study, light and electron microscopic analyses and genetic and functional investigations have shown that at least 50% of Aeromonas isolates from the species most commonly associated with diarrheal illness produce lateral flagella which mediate swarming motility. Aeromonas lateral flagella were optimally produced when bacteria were grown on solid medium for approximately 8 h. Transmission and thin-section electron microscopy confirmed that these flagella do not possess a sheath structure. Southern analysis of Aeromonas reference strains and strains of mesophilic species (n = 84, varied sources and geographic regions) with a probe designed to detect lateral flagellin genes (lafA1 and lafA2) showed there was no marked species association of laf distribution. Approximately 50% of these strains hybridized strongly with the probe, in good agreement with the expression studies. We established a reproducible swarming assay (0.5% Eiken agar in Difco broth, 30 degrees C) for Aeromonas spp. The laf-positive strains exhibited vigorous swarming motility, whereas laf-negative strains grew but showed no movement from the inoculation site. Light and scanning electron microscopic investigations revealed that lateral flagella formed bacterium-bacterium linkages on the agar surface. Strains of an Aeromonas caviae isolate in which lateral flagellum expression was abrogated by specific mutations in flagellar genes did not swarm, proving conclusively that lateral flagella are required for the surface movement. Whether lateral flagella and swarming motility contribute to Aeromonas intestinal colonization and virulence remains to be determined.  相似文献   

5.
6.
A comparative study of 109 Aeromonas clinical isolates belonging to the 3 species most frequently isolated from patients with diarrhea in Mexico and Spain was performed to investigate the distribution of 3 prominent toxin genes and the gene encoding flagellin of lateral flagella; 4 well-established virulence factors in the genus Aeromonas. The aerolysin-hemolysin toxin genes were the most prevalent, being present in 89% of the total isolates. The ast toxin gene was conspicuously absent from the Aeromonas caviae and Aeromonas veronii groups but was present in 91% of the Aeromonas hydrophila isolates. Both the alt toxin gene and the lafA flagellin gene also had a low incidence in A. caviae and A. veronii. Differences in the prevalence of alt and lafA were observed between isolates from Mexico and Spain, confirming genus heterogeneity according to geographic location. Carriage of multiple toxin genes was primarily restricted to A. hydrophila isolates, suggesting that A. caviae and A. veronii isolates circulating in Mexico and Spain possess a limited array of virulence genes. Enterobacterial repetitive intergenetic consensus - polymerase chain reaction showed that the Aeromonas populations sampled lack dominant clones and were genetically heterogeneous, with A. caviae being the most diverse species. Further surveys of virulence determinants in genetically heterogeneous populations of Aeromonas isolates circulating worldwide are required to enhance the understanding of their capacity to cause disease.  相似文献   

7.
Mesophilic Aeromonas strains express a single polar flagellum in all culture conditions and produce lateral flagella on solid media. Such hyperflagellated cells demonstrate increased adherence. Nine lateral flagella genes, lafA-U for Aeromonas hydrophila, and four Aeromonas caviae genes, lafA1, lafA2, lafB and fliU, were isolated. Mutant characterization, nucleotide and N-terminal sequencing demonstrated that the A. hydrophila and A. caviae lateral flagellins were almost identical, but were distinct from their polar flagellum counterparts. The aeromonad lateral flagellins exhibited higher molecular masses on SDS-PAGE, and this aberrant migration was thought to result from post-translational modification through glycosylation. Mutation of the Aeromonas lafB, lafS or both A. caviae lateral flagellins caused the loss of lateral flagella and a reduction in adherence and biofilm formation. Mutations in lafA1, lafA2, fliU or lafT resulted in strains that expressed lateral flagella, but had reduced adherence levels. Mutation of the lateral flagella loci did not affect polar flagellum synthesis, but the polarity of the transposon insertions on the A. hydrophila lafTlU genes resulted in non-motility. However, mutations that abolished polar flagellum production also inhibited lateral flagella expression. We conclude that Aeromonas lateral flagella: (i) play a role in adherence and biofilm formation; (ii) are distinct from the polar flagellum; (iii) synthesis is dependent upon the presence of a polar flagellum filament; and (iv) that the motor proteins of the polar and lateral flagella systems appear to be shared.  相似文献   

8.
Helicobacter mustelae causes chronic gastritis and ulcer disease in ferrets. It is therefore considered an important animal model of human Helicobacter pylori infection. High motility even in a viscous environment is one of the common virulence determinants of Helicobacter species. Their sheathed flagella contain a complex filament that is composed of two distinctly different flagellin subunits, FlaA and FlaB, that are coexpressed in different amounts. Here, we report the cloning and sequence determination of the flaA gene of H. mustelae NCTC12032 from a PCR amplification product. The FlaA protein has a calculated molecular mass of 53 kDa and is 73% homologous to the H. pylori FlaA subunit. Isogenic flaA and flaB mutants of H. mustelae F1 were constructed by means of reverse genetics. A method was established to generate double mutants (flaA flaB) of H. mustelae F1 as well as H. pylori N6. Genotypes, motility properties, and morphologies of the H. mustelae flagellin mutants were determined and compared with those of the H. pylori flaA and flaB mutants described previously. The flagellar organizations of the two Helicobacter species proved to be highly similar. When the flaB genes were disrupted, motility decreased by 30 to 40%. flaA mutants retained weak motility by comparison with strains that were devoid of both flagellin subunits. Weakly positive motility tests of the flaA mutants correlated with the existence of short truncated flagella. In H. mustelae, lateral as well as polar flagella were present in the truncated form. flaA flaB double mutants were completely nonmotile and lacked any form of flagella. These results show that the presence of both flagellin subunits is necessary for complete motility of Helicobacter species. The importance of this flagellar organization for the ability of the bacteria to colonize the gastric mucosa and to persist in the gastric mucus remains to be proven.  相似文献   

9.
10.
Mesophilic Aeromonas strains express a polar flagellum in all culture conditions, and certain strains produce lateral flagella on semisolid media or on surfaces. Although Aeromonas lateral flagella have been described as a colonization factor, little is known about their organization and expression. Here we characterized the complete lateral flagellar gene cluster of Aeromonas hydrophila AH-3 containing 38 genes, 9 of which (lafA-U) have been reported previously. Among the flgLL and lafA structural genes we found a modification accessory factor gene (maf-5) that is involved in formation of lateral flagella; this is the first time that such a gene has been described for lateral flagellar gene systems. All Aeromonas lateral flagellar genes were located in a unique chromosomal region, in contrast to Vibrio parahaemolyticus, in which the analogous genes are distributed in two different chromosomal regions. In A. hydrophila mutations in flhAL, lafK, fliJL, flgNL, flgEL, and maf-5 resulted in a loss of lateral flagella and reductions in adherence and biofilm formation, but they did not affect polar flagellum synthesis. Furthermore, we also cloned and sequenced the A. hydrophila AH-3 alternative sigma factor sigma54 (rpoN); mutation of this factor suggested that it is involved in expression of both types of flagella.  相似文献   

11.
The role of the Campylobacter jejuni flagella in adhesion to, and penetration into, eukaryotic cells was investigated. We used homologous recombination to inactivate the two flagellin genes flaA and flaB of C. jejuni, respectively. Mutants in which flaB but not flaA is inactivated remain motile. In contrast a defective flaA gene leads to immotile bacteria. Invasion studies showed that mutants without motile flagella have lost their potential to adhere to, and penetrate into, human intestinal cells in vitro. Invasive properties could be partially restored by centrifugation of the mutants onto the tissue culture cells, indicating that motility is a major, but not the only, factor involved in invasion.  相似文献   

12.
Campylobacter jejuni, a gram-negative motile bacterium, secretes a set of proteins termed the Campylobacter invasion antigens (Cia proteins). The purpose of this study was to determine whether the flagellar apparatus serves as the export apparatus for the Cia proteins. Mutations were generated in five genes encoding three structural components of the flagella, the flagellar basal body (flgB and flgC), hook (flgE2), and filament (flaA and flaB) genes, as well as in genes whose products are essential for flagellar protein export (flhB and fliI). While mutations that affected filament assembly were found to be nonmotile (Mot-) and did not secrete Cia proteins (S-), a flaA (flaB+) filament mutant was found to be nonmotile but Cia protein secretion competent (Mot-, S+). Complementation of a flaA flaB double mutant with a shuttle plasmid harboring either the flaA or flaB gene restored Cia protein secretion, suggesting that Cia export requires at least one of the two filament proteins. Infection of INT 407 human intestinal cells with the C. jejuni mutants revealed that maximal invasion of the epithelial cells required motile bacteria that are secretion competent. Collectively, these data suggest that the C. jejuni Cia proteins are secreted from the flagellar export apparatus.  相似文献   

13.
The archaeal flagellum is a unique motility apparatus in the prokaryotic domain, distinct from the bacterial flagellum. Most of the currently recognized archaeal flagella-associated genes fall into a single fla operon that contains the genes for the flagellin proteins (two or more genes designated as flaA or flaB ), some variation of a set of conserved proteins of unknown function ( flaC , flaD , flaE , flaF , flaG and flaH ), an ATPase ( flaI ) and a membrane protein ( flaJ ). In addition, the flaD gene has been demonstrated to encode two proteins: a full-length gene product and a truncated product derived from an alternate, internal start site. A systematic deletion approach was taken using the methanogen Methanococcus maripaludis to investigate the requirement and a possible role for these proposed flagella-associated genes. Markerless in-frame deletion strains were created for most of the genes in the M. maripaludis fla operon. In addition, a strain lacking the truncated FlaD protein [FlaD M(191)I] was also created. DNA sequencing and Southern blot analysis confirmed each mutant strain, and the integrity of the remaining operon was confirmed by immunoblot. With the exception of the ΔFlaB3 and FlaD M(191)I strains, all mutants were non-motile by light microscopy and non-flagellated by electron microscopy. A detailed examination of the ΔFlaB3 mutant flagella revealed that these structures had no hook region, while the FlaD M(191)I strain appeared identical to wild type. Each deletion strain was complemented, and motility and flagellation was restored. Collectively, these results demonstrate for first time that these fla operon genes are directly involved and critically required for proper archaeal flagella assembly and function.  相似文献   

14.
The detection of virulence factors of Aeromonas is a key component in determining potential pathogenicity because these factors act multifunctionally and multifactorially. In this study water samples were collected from a trout farm on a seasonal basis, and diseased fish and Aeromonas species were isolated and identified. For rapid detection of six virulence factors of isolated Aeromonas, a hexaplex-polymerase chain reaction (hexaplex-PCR) assay was used. The detected virulence factors include aerolysin (aer), GCAT (gcat), serine protease (ser), nuclease (nuc) lipase (lip) and lateral flagella (laf). The dominant strain found in our isolates was Aeromonas sobria, and the dominant virulence factors were aer and nuc for all seasons. We confirmed that A. sobria and two of the virulence genes (aer and nuc) are related. We proposed a method by which one can identify the major strains of Aeromonas: A. hydrophila, A. sobria, A. caviae, and A. veronii, using hexaplex-PCR.  相似文献   

15.
R A Alm  P Guerry    T J Trust 《Journal of bacteriology》1993,175(10):3051-3057
The complex flagellar filaments of the LIO8 serogroup member Campylobacter coli VC167 are composed of two highly related subunit proteins encoded by the flaA and flaB genes which share 92% identity. Using oligonucleotide primers based on the known DNA sequence of both the flaA and flaB genes from C. coli VC167 in the polymerase chain reaction, we have shown conservation of both fla genes among isolates within the LIO8 heat-labile serogroup by digestion of the amplified product with PstI and EcoRI restriction endonucleases. Amplification and subsequent restriction analysis of the flaA flagellin gene from Campylobacter isolates belonging to 13 different LIO serogroups further identified 10 unique polymorphic groups. Within most of the serogroups examined, isolates appeared to contain flaA genes with conserved primary structures. Only in serogroups LIO11 and LIO29 did independent isolates possess flagellin genes with different primary structures. Furthermore, by employing primers specific for the flaB gene of C. coli VC167, all serogroups examined contained a second fla gene corresponding to flaB. In all serogroups except the LIO5 and LIO6 isolates which were identical to each other, the polymorphic pattern of this flaB gene was identical to that of the corresponding flaA gene. These data indicate that the presence of a second highly homologous flagellin gene is widespread throughout Campylobacter isolates and that in most instances, the primary structure of the two fla genes is conserved within isolates belonging to the same heat-labile LIO serogroup. This may represent the presence of clonal evolutionary groups in Campylobacter spp.  相似文献   

16.
The prevalence of potential virulence markers was determined among the population of Polish Campylobacter jejuni and Campylobacter coli isolates from children, chickens, pigs and dogs. The presence of the flaA, flaB, cdtA, cdtB, cdtC, cdtABC, virB11, and cj0588 genes among 74 C. jejuni and 15 C. coli isolates was detected by PCR. High prevalence of five different putative virulence and toxin genes (flaA, cdtA, cdtB, cdtC, and cj0588) was found among isolates obtained from children, chickens and dogs. The occurrence of these genes among isolates obtained from pigs was significantly different than for strains isolated from other sources. Two methods for genotyping Campylobacter spp. strains were applied — flaA-typing, and ADSRRS-fingerprinting method, which was used for the first time for Campylobacter spp. strains. Similarity of the genetic profiles was demonstrated in strains isolated from chickens and dogs, and in isolates from chickens and children. Strains isolated from pigs, both C. jejuni as well as C. coli, did not group with isolates from other sources.  相似文献   

17.
Methanococcus voltae possesses four flagellin genes, two of which (flaB1 and flaB2) have previously been reported to encode major components of the flagellar filament. The remaining two flagellin genes, flaA and flaB3, are transcribed at lower levels, and the corresponding proteins remained undetected prior to this work. Electron microscopy examination of flagella isolated by detergent extraction of whole cells revealed a curved, hook-like region of varying length at the end of a long filament. Enrichment of the curved region of the flagella resulted in the identification of FlaB3 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and N-terminal sequencing, and the localization of this flagellin to the cell-proximal portion of the flagellum was confirmed through immunoblotting and immunoelectron microscopy with FlaB3-specific antibodies, indicating that FlaB3 likely composes the curved portion of the flagella. This could represent a unique case of a flagellin performing the role of the bacterial hook protein. FlaA-specific antibodies were used in immunoblotting to determine that FlaA is found throughout the flagellar filament. M. voltae cells were transformed with a modified flaA gene containing a hemagglutinin (HA) tag introduced into the variable region. Transformants that had replaced the wild-type copy of the flaA gene with the HA-tagged version incorporated the HA-tagged version of FlaA into flagella which appeared normal by electron microscopy.  相似文献   

18.
Genomic rearrangements in the flagellin genes of Proteus mirabilis   总被引:2,自引:0,他引:2  
Molecular analyses have revealed that Proteus mirabilis possesses two genes, flaA and flaB, that are homologous to each other and to flagellin genes of many other species. Both swimmer and swarmer cells transcribe flaA, but not flaB. FlaA- mutants are non-motile and do not differentiate showing the essential role of flaA in swarmer cell differentiation and behaviour. At a low frequency, motile, differentiation-proficient revertants have been found in FlaA-populations. These revertants produce an antigenically and biochemically distinct flagellin protein. The revertant flagellin is the result of a genetic fusion between highly homologous regions of flaA and flaB that places the active flaA promoter and the 5' coding region of flaA adjacent to previously silent regions of flaB generating a hybrid flagellin protein. Analysis of the flaA-flaB region of two such revertants reveals that a portion of this locus has undergone a rearrangement and deletion event that is unique to each revertant. Using a polymerase chain reaction (PCR) to amplify the falA-flaB locus from wild-type swimmer cells, swarmer cells and cells obtained after urinary tract infection, we uncover at least six general classes of rearrangements between flaA and flaB. Each class of rearrangement occurs within one of nine domains of homology between flaA and flaB. Rearrangement of flaA and flaB results in a hybrid flagellin protein of nearly identical size and biochemical properties, suggesting a concerted mechanism may be involved in this process. The data also reveal that the frequency and distribution of flaAB rearrangements is predicted on environmental conditions. Thus, rearrangement between flaA and flaB may be a significant virulence component of P. mirabilis in urinary tract infections.  相似文献   

19.
Strains of Clostridium botulinum are traditionally identified by botulinum neurotoxin type; however, identification of an additional target for typing would improve differentiation. Isolation of flagellar filaments and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that C. botulinum produced multiple flagellin proteins. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis of in-gel tryptic digests identified peptides in all flagellin bands that matched two homologous tandem flagellin genes identified in the C. botulinum Hall A genome. Designated flaA1 and flaA2, these open reading frames encode the major structural flagellins of C. botulinum. Colony PCR and sequencing of flaA1/A2 variable regions classified 80 environmental and clinical strains into group I or group II and clustered isolates into 12 flagellar types. Flagellar type was distinct from neurotoxin type, and epidemiologically related isolates clustered together. Sequencing a larger PCR product, obtained during amplification of flaA1/A2 from type E strain Bennett identified a second flagellin gene, flaB. LC-MS analysis confirmed that flaB encoded a large type E-specific flagellin protein, and the predicted molecular mass for FlaB matched that observed by SDS-PAGE. In contrast, the molecular mass of FlaA was 2 to 12 kDa larger than the mass predicted by the flaA1/A2 sequence of a given strain, suggesting that FlaA is posttranslationally modified. While identification of FlaB, and the observation by SDS-PAGE of different masses of the FlaA proteins, showed the flagellin proteins of C. botulinum to be diverse, the presence of the flaA1/A2 gene in all strains examined facilitates single locus sequence typing of C. botulinum using the flagellin variable region.  相似文献   

20.
Genomic organization and expression of Campylobacter flagellin genes.   总被引:41,自引:17,他引:24       下载免费PDF全文
Campylobacter coli VC167, which undergoes an antigenic flagellar variation, contains two full-length flagellin genes, flaA and flaB, that are located adjacent to one another in a tandem orientation and are 91.5% homologous. The gene product of flaB, which has an Mr of 58,946, has 93% sequence homology to the gene product of flaA, which has an Mr of 58,916 (S. M. Logan, T. J. Trust, and P. Guerry, J. Bacteriol. 171:3031-3038, 1989). Mutational analyses and primer extension experiments indicated that the two genes are transcribed under the control of distinct promoters but that they are expressed concomitantly in the same cell, regardless of the antigenic phase of flagella being produced. The flaA gene, which was expressed at higher levels than the flaB gene in both phases, was transcribed from a typical sigma 28-type promoter, whereas the flaB promoter was unusual. A mutant producing only the flaB gene product did not synthesize a flagellar filament and was nonmotile. Southern blot analysis indicated that flagellar antigenic variation involves a rearrangement of flagellin sequence information rather than the alternate expression of the two distinct genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号