首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the species composition of subaerial epixylic algae and cyanobacteria from a South-East Asian mountain rainforest locality in Cibodas, West Java. Green algae (Trebouxiophyceae, Chlorophyceae, Trentepohliales) were dominant and Cyanobacteria were the second most frequent group. We specifically concentrated on the comparison of species composition of closed primary forest and open antropogenic spaces. Trentepohliales and Cyanobacteria dominated in open spaces with higher light intensities, whereas closed forest localities were dominated by trebouxiophycean coccal green algae. There was a significantly higher algal diversity in open spaces than in closed forest samples indicating the limiting effect of light on subaerial algal communities of closed tropical forests. A number of isolated strains and morphotypes probably represent undescribed taxa. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

2.
The green algal communities in podzolic soils under coniferous forest in N.E. European Russia were studied in areas that were subjected to different technogenic pollution intensities. Sixty-five green algal species belonging to 4 classes, 12 orders, 20 families and 27 genera were recorded. The algal communities in the investigated soils of the different type spruce phytocoenoses included from 15 to 38 taxa on one site. Indicator species were identified for background spruce forests (Chalmydomonas gelatinosa, Tetracystis aggregata, T. dissociata, Pseudopleurococcus botryoides, Myrmecia bisecta) and for aerotechnogenically polluted spruce forests (Actinochloris sphaerica). The results may be used for the monitoring of the ecological state of biota in soils under boreal forests of protected areas and spruce forests exposed to intense aerial technogenic pollution. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

3.
Algae are used in biomonitoring systems to detect water or soil pollution. So it is conceivable to establish a biomonitoring system for the detection of airborne pollutants (ozone and particulate matter (PM-10)) in urban habitats by algae. Autotrophic biofilms are widely present, cover nearly every exposed surface, especially tree bark and consist of a large variety of species of algae, cyanobacteria and fungi. To explore the diversity of green algae at different air pollution monitoring sites we choose trees with different structures of bark at three locations in and near Leipzig. We compared the measured levels of air pollution with the algal species and communities present. The sites differed in the quality and amount of airborne pollutants, among which we concentrated on ozone and particulate matter (PM-10). The collection sites were Leipzig-Centre, Leipzig-West and a forest area east of Leipzig (Collmberg). Autotrophic biofilms were collected, algae cultures established and taxonomic and morphological studies were carried out with light microscopy. Green algae were present on tree bark at all sites and forty-eight different algal species and cyanobacteria were isolated. Preliminary results suggested a correlation between pollutants and occurrence of some specific algal species and the specific algal assemblages at a given site. It is concluded that this could provide the basis for a biomonitoring system involving aero-terrestrial algae for the detection of airborne pollutants. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

4.
This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI–biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r 2=0.59); (2) NDVI–biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.  相似文献   

5.
Algal communities inhabiting four calamine mine spoils differing in time since cessation of exploitation and loaded with high concentrations of zinc (20,284–61,599 μg g−1 soil DW), lead (2,620–3,885 μg g−1 DW) and cadmium (104–232 μg g−1 DW) were studied. In dump soils of slightly alkaline pH (7.28–7.52) and low nutrient (, , ) concentrations, chlorophyll a content ranged from 0.41 to 2.27 μg g−1 soil DW. In total, 23 algal species were recorded. Chlorophyta were the dominant taxonomic group (42–55% of all identified species) followed by Cyanobacteria (28–36%) and Heterokontophyta (13–21%). The highest species richness (18) was observed in the oldest dump (120 years old) with natural succession, while in younger dumps it was lower (11–15). Total algal abundance ranged between 5.5 and 19.1 × 102 ind. g−1 soil DW, and values of Margalef’s diversity indices (1.59–2.25) were low. These results may suggest that both high concentrations of heavy metals and low nutrient content influenced the algal communities in all the dumps studied. The differences in algal microflora observed between tailing dumps may indicate that habitat quality improved with time and that algae isolated from Zn/Pb-loaded soils may be Zn/Pb-resistant ecotypes of ubiquitous species.  相似文献   

6.
Observations were made on the development and distribution of phytoperiphyton communities in 66 lake-river systems in NW Russia from Lake Ladoga to the Barents Sea. In total, 130 genera and 648 species were identified from different substrates, belonging to Cyanophyta (19.1%), Bacillariophyta (59.6%), Chlorophyta (18.7%), and algae from other orders (2.6%). In all streams diatoms dominated by species richness, but they were surpassed by green algae in terms of biomass. The green algae ranged from small planktonic forms to large filamentous species and produced easily visible algal communities. Among the planktonic forms the desmids were the most diverse group. They occurred in attached communities of all rivers and, while never abundant, were widespread. The attached community’s biomass was dominated by green algae. Among these, the filamentous algae Mougeotia sp., Oedogonium sp., Zygnema sp., Spirogyra sp. and Ulothrix zonata exhibited mass development in streams. Their distribution was patchy in the basin, with a total cover varying from less than 1% to 90% of the stream bottom. In some river stretches the diversity and predominance of green algae could be due, in part, to poorly developed riparian canopies. The term periphyton adopted here follows the definition of Odum (1971): “Assemblages which include both plant and animal organisms growing attached to submerged objects”. The prefix phyto- is added to indicate that of the whole biocoenoses only phototrophs are considered in this study. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

7.
J. W. Moore 《Hydrobiologia》1977,54(3):201-208
The ash free dry weight of algae in the plankton, epilithon and gut of predominant herbivores was determined between June 1975 and July 1976 in 2 subarctic Canadian rivers (Baker Creek, Yellowknife River). Algae usually represented < 1% of suspended solids in both rivers and up to 8o% of material attached to rocks. While they were never found in the gut of rotifers and copepod nauplii in Baker Creek, they accounted for 0.5% of the contents of the planktonic conchostracon Lynceus brachyurus. Due to the inpalatable colonial structure of most attached algal species, the zoobenthos (mainly mayfly nymphs) contained only a few cells. Size selection against large fragments of detritus resulted in increased consumption of algae (5–13%) by Simulium venustum, S. decorum and S. arcticum. In the Yellowknife River, Diaptomus ashlandi (CIII–CVI stages) and Holopedium gibberum contained only a few (30–50) algal cells during summer. Because of size selection, large algae were not ingested by these species. The inpalatability of colonial algae greatly reduced consumption in the predominant zoobenthic species, Ephemerella coxalis and E. margarita. While all species digested diatoms, the Chlorophyta usually passed through the gut unharmed. It is concluded that algae are not an important energy source for invertebrates in either stream.  相似文献   

8.
Reclamation enhances soil quality by improving physical and chemical properties, which helps in restoration of mine soils. Evaluation of the effects of post-reclamation land uses on physical and chemical properties of mine soils helps to identify suitable land uses for mining companies. The objectives of this study were to evaluate the effects of post-reclamation land uses (e.g., forest, hay and pasture) on selected physical properties of soil in relation to undisturbed forest and agricultural land use. Soil samples were collected from the 0- to 5-, 5- to 15- and 15- to 30-cm depths in order to determine particle size distribution, bulk density, water-stable aggregates, mean-weight diameter and soil moisture retention. Cone index and infiltration rate were determined at soil surface. After 28 years of reclamation, bulk density in the surface layer of all land uses in the reclaimed mine soil (RMS) was similar to that of undisturbed forest (1.1 Mg m−3) but lower than that of agricultural soils (1.3 Mg m−3). However, soil bulk density at lower depths was not affected. The cone index was higher in the RMS-pasture (2.6 MPa) than the RMS-forest (1.4 MPa) and RMS-hay (1.5 MPa) due to the trampling effect of grazing animals. The water-stable aggregates (>2 mm), of 5–8 mm aggregates, were higher in RMS-forest by 24%, 90%, 66%, and under RMS-hay by 13%, 74%, 43% for the 0- to 5-, 5- to 15-, and 15- to 30-cm depths, respectively, than that under undisturbed forest. The mean-weight diameter (0- to 30-cm) of aggregates under RMS-forest and RMS-hay were higher than that under undisturbed forest by 41% and 27%, respectively. The initial infiltration rates at 5 min in RMS under forest, hay and pasture were less by 20%, 53% and 85%, respectively, than that under undisturbed forest (19.3 cm min−1). The reclamation of mine soils with forest and hay improved surface soil bulk density and cone index, and enhanced water infiltration capacity and water-stable aggregates at the lower depths. Therefore, establishment of forest and hay should be encouraged in the RMS.  相似文献   

9.
The distribution of phytoplankton was investigated in standing water bodies such as reservoirs, ponds and marshes. Thirty sampling sites in Northern Thailand were studied during 1998–2005. The water quality could be classified as oligotrophic-mesotrophic to eutrophic status. Twelve families, 51 genera and 181 species of chlorophytic phytoplankton were found. The dominant genera were Staurastrum spp., Cosmarium spp., Scenedesmus spp. and Pediastrum spp. The distribution of these species was mainly affected by the water quality. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

10.
Algal communities were investigated in two contrasting chronosequences established on reclaimed spoils in the west Bohemian brown coal mining district near Sokolov (Czech Republic) and in the Lusatian lignite mining district near Cottbus (Germany). The Sokolov chronosequence was characterized by tertiary cypric clay substrate, afforestation with Alnus glutinosa (L.) Gaertn., and high pH of deposited spoil material, Cottbus chronosequence by tertiary carboniferous and pyritic sand of extremely low pH ameliorated by fly ash, and afforestation with Pinus sylvestris L. and P. nigra Arnold. A total of 122 species of algae was found in both areas. Although the same species number (80) was identified from Sokolov and Cottbus, both proportion of individual algal groups and species composition were different. Green algae prevailed in both areas, but in Sokolov cyanobacteria and diatoms were also quite diverse, and in younger sites they were also abundant. Total abundance of algae ranged mostly between 104–107 cells/g dry soil, and was one order higher in Cottbus than in Sokolov. Species number was high in young sites, decreased with increasing age, and was the lowest in control forests. In Sokolov, the highest abundance was recorded in the youngest alder plantation. In Cottbus, sludge and compost fertilization used in the youngest pine plantations resulted in rapid formation of visible algal crusts dominated by Klebsormidium crenulatum (Kütz) Lokhorst.  相似文献   

11.
A dramatic increase in the breeding population of geese has occurred over the past few decades at Svalbard. This may strongly impact the fragile ecosystems of the Arctic tundra because many of the ultra-oligotrophic freshwater systems experience enrichment from goose feces. We surveyed 21 shallow tundra ponds along a gradient of nutrient enrichment based on exposure to geese. Concentrations of total phosphorus (P) and dissolved inorganic nitrogen (DIN) in the tundra ponds ranged from 2–76 to 2–23 μg l−1 respectively, yet there was no significant increase in phytoplankton biomass (measured as chlorophyll a; range: 0.6–7.3 μg l−1) along the nutrient gradient. This lack of response may be the result of the trophic structure of these ecosystems, which consists of only a two-trophic level food chain with high biomasses of the efficient zooplankton grazer Daphnia in the absence of fish and scarcity of invertebrate predators. Our results indicate that this may cause a highly efficient grazing control of phytoplankton in all ponds, supported by the fact that large fractions of the nutrient pools were bound in zooplankton biomass. The median percentage of Daphnia–N and Daphnia–P content to particulate (sestonic) N and P was 338 and 3009%, respectively, which is extremely high compared to temperate lakes. Our data suggest that Daphnia in shallow arctic ponds is heavily subsidized by major inputs of energy from other food sources (bacteria, benthic biofilm), which may be crucial to the persistence of strong top–down control of pelagic algae by Daphnia.  相似文献   

12.
13.
The International Symposium Biology and Taxonomy of Green Algae V was held at the Congress Centre of the Slovak Academy of Sciences in Smolenice, Slovakia, June 25–29, 2007. The symposium was attended by 61 phycologists from 19 countries of Europe (17), Asia (2) and America (4). Thirty-three lectures were given and 28 poster presentations exhibited and discussed. The scientific programme dealt with the taxonomy, ecology, physiology and genetics of green algae. One mid-symposium excursion to the Záhorie region (city of Skalica) was organized.  相似文献   

14.
Canna indica L. (CiL) was used here in phytoremediation of mining soils. Our work evaluated the effect of AMF (i) on the growth and (ii) on the uptake of heavy metals (HM). The tests were conducted in the greenhouse on mining substrates collected from the Kettara mine (Morocco). The mine soil was amended by different proportions of agricultural soil and compost and then inoculated with two isolates of AMF (IN1) and (IN2) of different origins. After six months of culture, the results show that on mining soils (100%) only AMF (IN2) was able to colonize the roots of CiL with a frequency of 40 ± 7% and an intensity of 6.5 ± 1.5%. Also, the lowest values of shoot and root dry biomass are obtained on these mining soils with respectively 0.30 g and 0.27 g. In contrast, the accumulation of HM was higher and reached more than 50% of that contained in the mining soils, the highest values with 138 mg kg?1 Cu2+, Zn2+ 270 mg kg?1 and 1.38 mg kg?1 Cd was recorded. These results indicate that the colonization of CiL roots by AMF (IN2) could significantly improve its potential to be used in phytoremediation of polluted soil.  相似文献   

15.
Soil microbes constitute an important control on nitrogen (N) turnover and retention in arctic ecosystems where N availability is the main constraint on primary production. Ectomycorrhizal (ECM) symbioses may facilitate plant competition for the specific N pools available in various arctic ecosystems. We report here our study on the N uptake patterns of coexisting plants and microbes at two tundra sites with contrasting dominance of the circumpolar ECM shrub Betula nana. We added equimolar mixtures of glycine-N, NH4+–N and NO3–N, with one N form labelled with 15N at a time, and in the case of glycine, also labelled with 13C, either directly to the soil or to ECM fungal ingrowth bags. After 2 days, the vegetation contained 5.6, 7.7 and 9.1% (heath tundra) and 7.1, 14.3 and 12.5% (shrub tundra) of the glycine-, NH4+- and NO315N, respectively, recovered in the plant–soil system, and the major part of 15N in the soil was immobilized by microbes (chloroform fumigation-extraction). In the subsequent 24 days, microbial N turnover transferred about half of the immobilized 15N to the non-extractable soil organic N pool, demonstrating that soil microbes played a major role in N turnover and retention in both tundra types. The ECM mycelial communities at the two tundras differed in N-form preferences, with a higher contribution of glycine to total N uptake at the heath tundra; however, the ECM mycelial communities at both sites strongly discriminated against NO3. Betula nana did not directly reflect ECM mycelial N uptake, and we conclude that N uptake by ECM plants is modulated by the N uptake patterns of both fungal and plant components of the symbiosis and by competitive interactions in the soil. Our field study furthermore showed that intact free amino acids are potentially important N sources for arctic ECM fungi and plants as well as for soil microorganisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
There is limited information regarding biogeochemical pools and fluxes in maritime tundra ecosystems along the Antarctic Peninsula. To collect baseline information on biogeochemical processes in a tundra ecosystem dominated by two vascular plant species (Colobanthus quitensis and Deschampsia antarctica) at Biscoe Point off the coast of Anvers Island, we measured pools and fluxes of C and N in transplanted tundra microcosm cores, complemented with sampling of precipitation and surface runoff. Snow and snowmelt from the tundra collection site and soil leachates from the cores were enriched with N and dissolved organic carbon compared to precipitation and snowmelt samples collected at Palmer Station, indicating high loading of N and organic matter from the penguin colonies adjacent to the tundra site. Relatively high values of δ15N in the live and dead biomass of D. antarctica and C. quitensis (5.6–25.1‰) indicated an enrichment of N in this tundra ecosystem, possibly through N inputs from adjacent penguin colonies. Stepwise multiple linear regressions found that ecosystem respiration and gross primary production were best predicted by live biomass of D. antarctica, suggesting a disproportionately high contribution of D. antarctica to CO2 fluxes. The cores with higher δ15N and lower δ13C in the soil organic horizon exhibited higher CO2 fluxes. The results suggest that abundant N inputs from penguin colonies and the competitive balance between plant species might play a critical role in the response of tundra ecosystems along the Antarctic Peninsula to projected climate change.  相似文献   

17.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

18.
Summary Algae, protozoa and photosynthetic bacteria which occur in considerable number in wet soils were examined for their ability to degrade the fungicides in broth culture. Blue green algae, namely, species of Anabaena, Nostoc and Tolypothrix brought about extensive degradation of the fungicides as revealed by thin layer chromatography. Green alga,Chlorella vulgaris also degraded the fungicides. The photosynthetic bacteriumRhodospirillum sp., failed to degrade carboxin beyond sulphoxide stage but degraded oxycarboxin to a greater extent. A protozoan species, Colpoda on the other hand, brought about extensive degradation of carboxin but not of oxycarboxin. These organisms have not been examined before for the detoxification of either carboxin or oxycarboxin.Part of Ph.D. Thesis, submitted to USA, Bangalore-65 under the guidance of the second author.  相似文献   

19.
Diversity and ecology of desmids of peat bogs in the Jizerské hory Mts   总被引:1,自引:0,他引:1  
The present study focuses on diversity and ecological preferences of desmids in peat bogs in the Jizerské hory Mts (Czech Republic). Altogether 76 desmid algae taxa have been recorded at 18 sites of the study area during our investigation in 2003–2006. Taxa Actinotaenium crassiusculum (De Bary) Teiling, Hyalotheca dissiliens var. tatrica Racib., Staurastrum avicula var. subarcuatum (Wolle) West & G. S. West, S. borgeanum Schmidle, S. simonyi var. semicirculare Coesel, Staurodesmus extensus var. isthmosus (Heimerl) Coesel, S. extensus var. vulgaris (Eichler & Racib.) Croasdale and S. spencerianus (Mask.) Teiling are new for the Czech Republic. In addition, several rare and remarkable taxa were also encountered. The species richness was relatively high in comparison to similar localities in the Czech Republic. Desmid distribution was influenced by pH and conductivity. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

20.
We surveyed plant community development at the abandoned Ogushi sulfur mine. We found seven communities dominated by the following respective species: Deschampsia flexuosa, Miscanthus sinensis, shrub willow, Gaultheria miquelianaBetula ermanii, Sasa senanensisBetula ermanii, willow–Betula ermanii, and Sasa kurilensisAbies veitchii. We examined the succession of these communities, in which younger communities of low height and ground cover contained seedlings of the successive communities that were taller and had higher ground cover. To understand the development of these different communities, we surveyed damage from mining pollution and effects of immature soils formed by landslides. The average pH (H2O) was 4.12, and aluminum concentrations were not sufficiently high to damage plant growth, except in areas where sulfur had been mined. The organic carbon and nitrogen content in soil samples were very low because of a delay in soil development caused by a large landslide in 1937. Hence, succession was positively correlated with the soil development stage. The delay in soil development after a large landslide influenced the seven successional steps of the plant communities, but mineral poisons at the abandoned Ogushi sulfur mine had no effect on succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号