首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of epostane, a 3beta-hydroxysteroid dehydrogenase (3beta-HSD) inhibitor, on the levels of plasma cortisol and progesterone and on the length of the estrous cycle in sows was examined. Epostane was administered orally on Days 0 to 2 (n = 3), Days 4 to 6 (n = 3), Days 10 to 12 (n = 2) or Days 17 to 19 (n = 3) of the estrous cycle, or subcutaneously on Day 0 (n = 3), Day 4 (n = 3), Day 10 (n = 4) or Day 17 (n = 3). Eleven days after the first dose of epostane, the treatments were repeated. One group of sows (n = 3) that was bled during a single estrous cycle served as controls. Cortisol levels in each of the eight groups of sows that received epostane did not differ (P>0.05) from those in control sows. In contrast, progesterone was lowered (P<0.01) when epostane was given by injection on Day 4, 10 or 17, or when given orally on Days 4 to 6 and 10 to 12. Although epostane reduced progesterone levels, the estrous cycle was not shortened. The interestrous interval for the sows (n = 14) that completed their experimental estrous cycle before they were sacrificed at approximately one week after the last dose of epostane was 21.6 +/- 2.71 d. It was concluded that epostane, as administered in this study, lowered progesterone levels but did not shorten the estrous cycle.  相似文献   

2.
Basal adenylate cyclase values for corpora lutea (CL) removed from cyclic gilts on Days 3, 8, 13 and 18 were 178 +/- 61, 450 +/- 46, 220 +/- 25 and 208 +/- 18 pmol cAMP formed/min/mg protein, respectively. Basal activity was significantly elevated on Day 8 (P less than 0.001). LH-stimulatable adenylate cyclase values for CL from Days 3, 8, 13 and 18 were 242 +/- 83, 598 +/- 84, 261 +/- 27 and 205 +/- 17 pmol cAMP formed/min/mg protein respectively. Serum progesterone concentrations of 12 gilts bled every 2 days through one complete oestrous cycle ranged from 1.1 to 26.9 ng/ml with highest values between Days 8 and 12. The decline in serum progesterone concentrations was coincident with the decrease in basal adenylate cyclase activity. There was no LH-stimulatable adenylate cyclase activity present in the CL at the specific times of the oestrous cycle examined. We conclude that progesterone secretion by the pig CL is apparently dependent on basal activity of adenylate cyclase.  相似文献   

3.
The vasoconstrictor activity of the ovarian vascular bed in vitro was investigated during the oestrous cycle and early pregnancy. Gilts were killed during the follicular phase (Days 20 to +1; N = 5) or luteal phase (Days 11 to 13; N = 4) of the oestrous cycle, or on Day 13 of pregnancy (N = 5). Immediately before death, a sample of vena cava blood was obtained for determination of progesterone and oestrogen (oestrone and oestradiol-17 beta) concentrations. One ovary was removed, cannulated, perfused in vitro, and subjected to 10-min infusions of saline (vehicle control) and noradrenaline. Vasoconstriction was provoked by electrical stimulation at the end of each infusion. Ovaries from luteal-phase gilts exhibited greater (P less than 0.01) vasoconstriction than did ovaries from follicular-phase and pregnant gilts at the end of saline and noradrenaline infusions. The oestrogen to progesterone ratio was less (P less than 0.01) for luteal-phase and pregnant than for follicular-phase gilts. Vasoconstriction was negatively correlated (r = -0.99, P less than 0.01) with the oestrogen to progesterone ratio in systemic blood of gilts during the oestrous cycle but not during early pregnancy (r = +0.39, P greater than 0.10), possibly due to an effect of the conceptuses.  相似文献   

4.
In Exp. I infusions of prolactin (0.5 mg in 2 ml sterile saline) were repeated every 2 h for 36 h on Days 12-13 of the cycle. In Exp. II infusions of prolactin were administered from Days 17 to 19 (60 h) at 2-h intervals. Control gilts were given 2 ml sterile saline at similar intervals during the same period. Basal prolactin concentrations before initiation of infusions ranged from 1.3 +/- 0.1 to 5.6 +/- 2.2 ng/ml in both experiments. By 5 min after a prolactin infusion, mean plasma prolactin concentration ranged from 74.9 +/- 5.8 to 113.0 +/- 9.5 ng/ml, but then declined to approximately equal to 10 ng/ml just before the next infusion of prolactin. Administration of prolactin during the luteal phase of the oestrous cycle of the gilts had no effect on basal levels of progesterone, oestradiol or LH. During the follicular phase there were no differences (P greater than 0.05) between control and prolactin-treated gilt progesterone and LH concentrations, but oestradiol plasma values were decreased (P less than 0.05) on the 2nd and 3rd day of prolactin treatment. Our results would indicate that prolactin does not play a major role in the regulation of the oestrous cycle of the pig.  相似文献   

5.
Blood samples were collected simultaneously from the jugular and utero-ovarian veins of 13 gilts from Days 11 through 16 of the oestrous cycle. A luteolytic dose (10 mg) of PGF-2 alpha was given on Day 12 to facilitate the natural occurrence of luteolysis and standardize the associated decrease in concentrations of progesterone. The mean interval from PGF to oestrus was 5.5 +/- 0.7 days (mean oestrous cycle length = 17.5 +/- 0.7 days). Mean concentrations, pulse amplitudes and pulse frequencies of oestradiol and progesterone were greater (P less than 0.05) in the utero-ovarian than jugular vein. Secretory profiles of LH and FSH were similar (P greater than 0.05) in plasma collected simultaneously from both veins. Based on these data, temporal relationships among hormonal patterns of FSH and LH in the jugular vein and oestradiol and progesterone in the utero-ovarian vein were examined. Concentrations of progesterone declined (P less than 0.05) between Days 12 and 14, while all secretory variables for oestradiol increased (P less than 0.05) from Day 12 through 16 of the oestrous cycle. The pulsatile secretion of FSH remained relatively constant during the experiment. However, both pulse amplitude and mean concentration tended (P less than 0.2) to be lower on Day 16 compared with Day 12. The episodic secretion of LH shifted from a pattern characterized by high-amplitude, low-frequency pulses to one dominated by numerous pulses of diminishing magnitude between Days 13 and 14. From Days 14 to 16 of the oestrous cycle, 91% of all oestradiol pulses were temporally associated with gonadotrophin pulses composed of both FSH and LH episodes. However, pulses of oestradiol (52%) not associated with an episode of LH and/or FSH were observed on Days 12 and 13. These data demonstrate that during the follicular phase of the pig oestrous cycle substantial oestradiol production occurred coincident with luteolysis and before the shift in the episodic secretion of LH. The pool of follicles which ovulated was probably the source of this early increase in the secretion of oestradiol. Therefore, we propose that factors in addition to FSH and LH are involved in the initial selection of follicles destined to ovulate during the early stages of the follicular phase of the pig oestrous cycle. In contrast, high-frequency, low-amplitude pulses composed of LH and FSH were the predominant endocrine signal associated with oestradiol secretion during the second half of the oestrous cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Blastocysts were flushed out of both uterine horns of gilts on Days 10, 11, 12 or 13. In mated non-pregnant gilts flushing had no effect on progesterone profile or cycle length (20.8 +/- 0.4 versus 20.6 +/- 0.6 days in the preflush cycle, N = 6, mean +/- s.e.m.). Flushing the blastocysts out of the uterine horns on Day 10 resulted in a cycle with a normal progesterone profile and a normal length (21.2 +/- 0.4 days, N = 5). Flushing on Days 11, 12 or 13 resulted in a normal cycle or in maintenance of the CL for 3-13 days as indicated by elevated progesterone concentrations and an increased interoestrous interval of, respectively, 22.0 +/- 1.2 versus 19.8 +/- 0.6 days (Day 11; N = 6), 24.8 +/- 1.4 versus 21.0 +/- 0.6 days (Day 12; N = 5; P less than 0.05) and 26.3 +/- 2.3 versus 20.5 +/- 0.4 days (Day 13; N = 6; P less than 0.05). There was a positive relationship between the change in interoestrous interval and the interval between the first observed standing oestrus and flushing of the blastocysts (rs = 0.350; n = 22; P less than 0.1). There was a large variation in the diameter of the blastocysts flushed on the same day. Only in those gilts in which the blastocysts were greater than or equal to 8 mm or filamentous were the CL maintained for 3 or more days. These results indicate that a first signal for maternal recognition of pregnancy is generated on Day 12 and that blastocysts greater than or equal to 8 mm are required for prolongation of CL function for 3 or more days. Since CL function is only extended for a maximum of 13 days (mean 7.4 +/- 1.0), a second signal seems necessary to maintain the CL for the whole period of pregnancy.  相似文献   

7.
The activities of uteroferrin, measured as acid phosphatase (AP), and an aminoacylpeptidase (AA) were measured in uterine flushings collected from gilts on Days 6, 8, 10, 12, 14, 15, 16 and 18 of the oestrous cycle and pregnancy (N = 37). Changes in AP (P less than 0.05) were associated with day for both specific and total AP in non-pregnant and pregnant gilts. For pregnant and non-pregnant gilts, AP activity was greatest between Days 14 and 16 and then decreased to Day 18. The AA specific activity increased (P less than 0.01) between Days 10 and 12 of the oestrous cycle and pregnancy, but neither effects of pregnancy nor day by pregnancy status interaction were detected. The AA total activity was greater for pregnant gilts (P less than 0.01). These data suggest an inhibitory effect of oestrogens of blastocyst origin on synthesis and/or secretion of uteroferrin, but not AA.  相似文献   

8.
In our previous study we have demonstrated that treatment of endometrial explants with LH increased 13,14-dihydro-15-ketoprostaglandin F(2alpha) (PGFM) accumulation in pigs. This was particularly visible on Days 14-16 of the estrous cycle. Action of gonadotropin in porcine endometrium appears to be mediated by LH/hCG receptors whose number is dependent on the day of the estrous cycle. In the current study i.v. infusion (1 hour) of hCG (200 IU) performed on Days 10 (n=4) and 12-14 (n=4) of the porcine estrous cycle did not affect plasma PGFM (ng/ml+/-SEM) concentrations. In contrast, administration of hCG on Days 15-17 produced, depending on plasma PGFM level before the infusion period, three different types of response: I. plasma PGFM surge of amplitude 0.62+/-0.15 was observed when the mean basal pre-infusion PGFM plasma level was 0.23+/-0.05 (n=6 gilts); II. the delayed PGFM surge of amplitude 0.62+/-0.15 was determined when basal pre-infusion PGFM level was 0.80+/-0.20 (n=6); and III. lack of PGFM response to hCG was found when basal pre-infusion PGFM level was 1.09+/-0.61 (n=6). Concentrations of plasma PGFM before and after saline infusion did not differ on Days 12-14 and 16 of the estrous cycle. In the next experiment blood samples were collected every 1 hour on Days 12-19 of the estrous cycle to determine concentrations of LH, PGFM and progesterone in four gilts. In particular gilts, plasma peaks of LH closely preceded surges of PGFM in 72.7, 84.6, 75.0 and 66.6 percent, respectively. The highest PGFM surges followed a decline in plasma progesterone concentration. We conclude that the increased PGF(2alpha) metabolite production after hCG infusion during the late luteal phase of the estrous cycle as well as the relationship between plasma LH and PGFM peaks suggest the LH involvement in the elevation of endometrial PGF(2alpha) secretion in pigs, and, in consequence, induction of luteolysis.  相似文献   

9.
Components of litter size in gilts with different prolactin receptor genotypes   总被引:17,自引:0,他引:17  
Behavioral estrus and components of litter size at Day 35/36 of pregnancy were studied in gilts with prolactin receptor (PRLR) genotype AA (n=9), AB (n=25), and BB (n=22). This PRLR polymorphism (two alleles, A and B) has been associated with litter size, although it is not known whether the polymorphism itself causes differences in litter size or whether it is a marker for a closely linked causative gene. Estrus length in three successive estrous cycles was not affected by genotype, but estrous cycle length tended (P<0.1) to be longer for AA gilts compared to AB and BB gilts. AA gilts had a significantly (P<0.05) higher ovulation rate (21.5+/-0.9) than BB gilts (18.7+/-0.6), resulting in a numerically higher number of embryos at Day 35/36 (17.0+/-1.3, 15.6+/-0.8, and 13.7+/-0.9 for AA, AB, and BB gilts, respectively) which may lead to a subsequent difference in litter size. Ovulation rate of AB gilts (20.0+/-0.5) was intermediate. Genotype affected the total weight of the ovaries (P<0.05). Even after subtraction of the total weight of corpora lutea, ovarian weight in AA gilts was highest (16.6+/-1.0 g), in BB lowest (13.4+/-0.6g), and in AB gilts intermediate (15.0+/-0.6g; P<0.05). Unlike AB gilts, in AA and BB gilts uterine length was adapted to litter size, which led to longer (P<0.05) uteri for AA gilts (669+/-28 cm) compared to BB gilts (566+/-18 cm). Furthermore, embryos of AA gilts had heavier placentae (52.5+/-3.4 g) and larger implantation surface areas (309+/-19 cm(2)) than embryos of BB (42.0+/-2.3g, P<0.05; 256+/-12 cm(2), P<0.1) or AB (43.2+/-2.0 g, P<0.1; 257+/-11 cm(2), P<0.05) gilts. Results of this experiment show that the PRLR gene or a very closely linked gene affects porcine ovaries, uterus, and placenta in a way that might lead to differences in litter size. Since other genes and also environmental factors, however, might change the effect within the 112 days to parturition, it is preferable to state that the PRLR gene is a candidate gene for ovulation rate rather than for litter size.  相似文献   

10.
Pseudopregnancy in pigs can be induced by the administration of a single dose of hCG at Day 12 of the estrous cycle. However, the resulting length of pseudopregnancy can be extremely variable. In this study, it was investigated whether time of hCG administration (day of the cycle) and degree of follicle growth after hCG administration were related to the length of inter-estrous interval (pseudopregnancy). In the first experiment, groups of cyclic gilts were given 1500 IU hCG at either Day 11 (D 11; n=14) or Day 12 (D12; n=14) after onset of estrus, or not treated (Control; n=13). Follicle development was assessed daily using transcutaneous ultrasonography. Follicle size in the Control gilts remained relatively constant between Days 11 and 17, whereas in the treated gilts, follicle size increased (P < 0.001) within 4 days (D11) and 2 days (D12) after treatment. The inter-estrous interval was increased (P < 0.01) in the hCG-treated gilts (34.7+/-6.3 and 37.6+/-11.1 days in the D11 and D12 gilts, respectively), compared to Controls (22.3+/-5.2 d). About two-thirds of the treated gilts returned to estrus between Days 32 and 39 after onset of first estrus. No relationships were found between follicle development after treatment and length of the inter-estrous interval. In a second experiment, 16 cyclic gilts were treated with 1500 IU hCG at Day 12 and Day 15 of the estrous cycle. Follicle development was assessed at Days 12, 15 and 18. At Day 18, average follicle size was 8.4+/-2.0 mm. The inter-estrous interval was 39.7+/-5.4 days and 14 of 16 gilts returned to estrus between Days 34 and 44 after onset of first estrus. Again, no relationships were found between follicle development after treatment and the duration of the inter-estrous interval. We conclude that, based on the duration of the inter-estrous interval, administration of hCG during the luteal phase induced a short pseudopregnancy. However, the induction of accessory corpora lutea or follicular luteinization cannot be discounted.  相似文献   

11.
Six cows were injected i.m. with either 4 × 125 mg or 4 × 250 mg of the 3β-hydroxy steroid dehydrogenase inhibitor epostane (Win32729) at 12-h intervals during the luteal phase of the oestrous cycle. Four more cows received 1 × 1 g epostane i.m. In all cows there was a transient decrease in plasma progesterone concentrations beginning within 8 h of the first injection, the decrease being more rapid and greater in the group receiving 1 × 1 g epostane. However, progesterone concentrations did not reach basal values and no preovulatory LH or FSH surges occurred. Progesterone concentrations invariably returned to pre-injection values within a few days and the length of the oestrous cycle was not affected. During the treatment period there were significant negative correlations between mean plasma LH and progesterone concentrations.  相似文献   

12.
Ovarian and luteal blood flow rates were studied using radioactive microspheres in guinea-pigs between Day 6 of the oestrous cycle and Day 1 of the following cycle. Peripheral plasma progesterone levels were measured by radioimmunoassay on the same days of the oestrous cycle. Ovarian blood flow was greatest between Days 9 and 12 and had fallen by Day 16 both in absolute (ml . min-1) and relative (ml.min-1.g-1) terms. Luteal weight and blood flow were also greatest between Days 9 and 12 and had fallen sharply by Day 16. The highest mean (+/- s.d.) luteal flows measured were 0.10 +/- 0.04 ml.min-1 per corpus luteum, and 24.26 +/- 9.3 ml.min-1.g-1 luteal tissue on Day 10 of the cycle. Mean peripheral plasma progesterone levels reached a maximum of 3.66 +/- 1.1 ng/ml at Day 12 of the cycle and fell thereafter, reaching 0.74 +/- 0.5 ng/ml by Day 1 of the following cycle. Plasma progesterone levels declined significantly between Days 12 and 14 of the cycle, whereas no significant drop in luteal blood flow was demonstrable until after Day 14. These data do not support the idea that declining luteal blood flow is an initiating mechanism in luteal regression in the guinea-pig.  相似文献   

13.
Active immunization against oxytocin significantly prolonged the oestrous cycle in 3 out of 4 goats; the mean (+/- s.e.m.) cycle length was 29.1 +/- 1.7 days (n = 12) compared to 19.4 +/- 0.6 days (n = 9) in control animals. During Days 10-21 of the cycle in the 3 responsive goats, peripheral plasma concentrations of progesterone and oxytocin were steady and those of 13,14-dihydro-15-keto-prostaglandin F-2 alpha were very low (50-100 pg X ml-1) with no marked pulsatile activity. The major effect of immunization would appear to be suppression of the synthesis of the uterine luteolysin PGF-2 alpha, thus confirming that endogenous oxytocin has a facilitatory role in luteolysis via prostaglandin production.  相似文献   

14.
Development and demise of luteal structures were monitored using daily transrectal ultrasonography in 2 breeds of sheep differing in ovulation rates (nonprolific Western white-faced cross-bred, n = 12 and prolific pure-bred Finn sheep, n = 7), during 1 estrous cycle in the mid-breeding season. Jugular blood samples were collected once a day for radioimmunoassay (RIA) of progesterone. The mean diameter of ovulatory follicles was higher in Western white-faced than in Finn ewes (6.4 +/- 0.2 and 5.3 +/- 0.2 mm, respectively; P < 0.001). The mean volume of luteal structures was higher (P < 0.05) in Western white-faced compared with Finn sheep from Days 5 to 15 of the cycle (Day 0 = day of ovulation). This accounted for the higher (P < 0.05) total luteal volumes recorded in Western white-faced ewes on Day 7 and from Days 11 to 15, despite the higher ovulation rate in Finn ewes (2.7 +/- 0.3 and 1.7 +/- 0.2, respectively; P < 0.05). Mean serum progesterone concentrations were higher (P < 0.05) in Western white-faced than in Finn ewes from Days 4 to 14. Daily total luteal volumes were positively correlated with daily serum progesterone concentrations throughout the cycle in Finn sheep (r > or = 0.40, P < 0.02), and during luteal growth and regression (r > 0.60, P < or = 0.00001) but not during mid-cycle in white-faced ewes (r = 0.16; P = 0.22). During the growth of the corpora lutea (CL), luteal tissue volume increased faster (P < 0.05) than serum progesterone concentrations in both breeds of sheep. During luteolysis, the decrease in luteal volumes parallelled that in serum progesterone concentrations in Finn (P = 0.11) but not in Western white-faced ewes, where luteal volumes decreased more slowly (P = 0.02) in relation to progesterone secretion. Increased ovulation rate in prolific Finn ewes resulted in more but smaller CL, and lower serum progesterone levels compared with nonprolific Western white-faced ewes. We conclude that breed-specific mechanisms exist to control the formation of luteal tissue and progesterone secretion in cyclic ewes differing in prolificacy. The mechanisms may involve ovulation of Graafian follicles at different sizes and inhibitory paracrine effects of CL on co-existing CL.  相似文献   

15.
Small samples of backfat were taken daily during one oestrous cycle and more frequently after ovariectomy from 12 gilts by means of a simple biopsy technique and the levels of progesterone were determined. Compared to the levels of progesterone in peripheral plasma changes in backfat levels during the oestrous cycle were delayed by 1-2 days. Maximal levels with 89.7 +/- 9.2 (mean +/- s.e.m) ng progesterone/100 mg backfat were recorded on Day 15 of the oestrous cycle. It was estimated that, on this day, a total amount of about 36 mg progesterone is stored in the adipose tissue, which is approximately 200 times that present in total blood and corresponds to the daily production of the corpora lutea of the sow on Day 11. Initial half-life of progesterone in backfat after ovariectomy was estimated to be about 34 h compared to an initial half-life of plasma progesterone of about 120 min. The exact calculation of half-lives was, however, confounded by an obvious effect of anaesthesia or surgery on progesterone levels. Changes in backfat or plasma progesterone concentrations were not affected by the fat-to-lean ratio of the gilts. Fat progesterone levels determined in 44 additional pregnant and non-pregnant sows 17 or 20 days after mating indicated that reliable diagnosis of non-pregnant sows was possible on Day 20. It is concluded that the endocrinology of the oestrous cycle in pigs is related to the enormous storage of progesterone in the fat.  相似文献   

16.
A series of experiments was performed to investigate the influence of progesterone at Days 2 and 3 of pregnancy on conceptus development and uterine capacity. In experiment 1, unilaterally hysterectomized-ovariectomized (UHO) white crossbred gilts were given no treatment, estradiol valerate (5 mg given on Days 11 and 12), or progesterone (200 mg/day on Days 2 and 3 after mating). On Day 105 of pregnancy, each fetus and its associated placenta were weighed, and the number of live and dead fetuses was recorded for each litter. Early progesterone treatment reduced (P < 0.05) litter size (a measure of uterine capacity in UHO gilts). In experiment 2, intact white crossbred gilts were mated, given no treatment or progesterone treatment on Days 2 and 3 of pregnancy, and farrowed. Progesterone treatment decreased (P < 0.05) pregnancy rates. In pregnant gilts, progesterone had no effect on the number of live or stillborn piglets at birth, and gestation length was decreased (P < 0.05). Progesterone treatment did not affect the number of large or small piglets. In experiment 3, intact gilts were mated at estrus and then received 1). no treatment or treatment with 2). 100 mg, 3). 200 mg, or 4). 400 mg mifepristone (also known as RU486) on Day 2 of pregnancy. On Day 11 of pregnancy, both uterine horns were flushed, the number and diameter of each conceptus was recorded, and the flushed material was assayed for total protein and acid phosphatase. The 400 mg mifepristone treatment decreased conceptus diameter (P < 0.05) and total protein (P = 0.06) in the uterine flushings. In experiment 4, UHO gilts were mated at estrus, injected with either corn oil (control) or mifepristone (400 mg) on Day 2 of pregnancy, and killed on Day 105 of pregnancy, and the number and weight of live fetuses and placentas was recorded. In contrast to the effect of progesterone treatment, mifepristone decreased uterine capacity by decreasing the number of small conceptuses. These data suggest that progesterone concentrations on Days 2 and 3 of pregnancy in swine influence the rate of conceptus development during early pregnancy and uterine capacity during later pregnancy.  相似文献   

17.
Reproductive cycles were studied in a group of tame Père David's deer hinds. The non-pregnant hind is seasonally polyoestrous and, in animals studied over 2 years, the breeding season began in early August (2 August +/- 3.3 days; s.e.m., N = 9) and ended in mid-December (18 December +/- 5.7 days; N = 8) and early January (6 January +/- 3.2 days; N = 11) in consecutive years. During the anoestrous period, plasma progesterone concentrations were low (0.2 +/- 0.01 ng/ml) or non-detectable. There was a small, transient increase in progesterone values before the onset of the first cycle of the breeding season. In daily samples taken during an oestrous cycle in which hinds were mated by a marked vasectomized stag, progesterone concentrations remained low (less than 0.5 ng/ml) for a period of about 6 days around the time of oestrus, showed a significant increase above oestrous levels by Day 4 (Day 0 = day of oestrus) and then continued to increase for 18 +/- 2.8 days to reach mean maximum luteal levels of 3.5 +/- 0.6 ng/ml. The plasma progesterone profiles from a number of animals indicated that marking of the hinds by the vasectomized stag did not occur at each ovulation during the breeding season and therefore an estimate of the cycle length could not be determined by this method. In the following year, detection of oestrus in 5 hinds was based on behavioural observations made in the absence of the stag. A total of 19 oestrous cycles with a mean length of 19.5 +/- 0.6 days was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Doses of 100 or 200 micrograms of a novel GnRH antagonist ([N-acetyl-D beta Na11-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8-D-Ala10]NH2 GnRH) (4 animals/dose) were administered on Days 10/11 of the luteal phase and induced a marked suppression of circulating bioactive LH and progesterone concentrations within 1 day of treatment (P less than 0.01). Thereafter, progesterone concentrations remained low or undetectable until after the next ovulation. Similar results were obtained when 200 micrograms antagonist were given on Days 5/6 of the luteal phase (N = 4). The interval from injection of antagonist (200 micrograms but not 100 micrograms) to ovulation (based on a rise in progesterone above 10 ng/ml) was significantly longer than that from prostaglandin-induced luteal regression to ovulation in control cycles (N = 4/treatment) (range, 13-15 days after antagonist vs 8-10 days after prostaglandin, P less than 0.01). This delay of 4-5 days was equivalent to the duration for which LH concentrations were significantly suppressed by 200 micrograms antagonist when administered to ovariectomized animals (N = 3). Corpus luteum function during the cycle after GnRH antagonist treatment appeared normal according to the pattern of circulating progesterone. These results show that corpus luteum function and preovulatory follicular development in the marmoset monkey are dependent on pituitary gonadotrophin secretion.  相似文献   

19.
Occupied and unoccupied LH receptors in corpora lutea, and LH and progesterone concentrations in circulating plasma, were measured in non-pregnant gilts that had been treated with oestradiol-17 beta benzoate to prolong luteal function. Oestradiol benzoate (5 mg, administered on Day 12 after oestrus) delayed luteal regression and the decline in LH receptor levels at luteolysis and raised unoccupied receptor levels from 11.8 +/- 1.14 fmol/mg protein on Days 10--15 after oestrus to 31.8 +/- 3.26 fmol/mg protein on Days 15--21. There was no simultaneous rise in occupied receptor levels and occupancy decreased from 29.8 +/- 3.01 to 11.5 +/- 1.26%. Basal plasma LH concentrations were unchanged by oestradiol, but mean corpus luteum weight and plasma progesterone concentrations were slightly reduced. Oestradiol benzoate on Day 12 caused a similar increase in unoccupied receptor levels in gilts hysterectomized on Days 6--9 after oestrus, from 17.0 +/- 5.83 to 34.5 +/- 6.00 fmol/mg protein, determined on Days 15--18. Plasma concentrations of LH and progesterone were unchanged by oestradiol. Unoccupied receptor levels in corpora lutea and plasma LH and progesterone were unaltered by hysterectomy in untreated gilts. Occupied receptor levels were not influenced by hysterectomy or oestradiol. It is concluded that oestradiol-17 beta raises luteal LH receptor levels by a mechanism independent of the uterus.  相似文献   

20.
Progestagens are widely used to synchronise oestrous in sheep but the effects on follicular dynamics are not clear. We tested the hypothesis that when luteolysis occurs early during progestagen synchronisation prolonged growth of the ovulatory follicle will occur. Cyclic ewe lambs (40.0+/-0.3 kg) were divided into three groups: eight ewes (Long group) received a progestagen sponge (60 mg medroxyprogesterone acetate) from Days 5 to 19 after oestrous and eight ewes (Short group) received a progestagen sponge on Day 5 which was replaced on Day 10 and again on Day 15, and removed on Day 19 after oestrous. On Days 6 and 7, ewes in both groups received prostaglandin. A third group (n=5, Control) did not receive any treatment. The growth and development of follicles > or =2 mm in diameter were characterised using daily transrectal ultrasonography. On Day 18, blood samples were collected every 12 min for 8 h from five ewes in the Long and Short groups. Data were analysed by ANOVA. The maximum diameter and age (emergence to ovulation) of the ovulatory follicle was greater (P<0.01) in ewes in the Long group (7. 4+/-0.2 mm and 12.1+/-0.6 days) than in ewes in the Short group (6. 3+/-0.2 mm and 5.1+/-0.5 days) and Control group (6.3+/-0.4 mm and 6. 8+/-0.6 days). On Day 18 of the cycle, LH pulse frequency and oestradiol concentrations were greater (P<0.05) in ewes in the Long group (3.2+/-1.1 pulse per 8 h and 1.15+/-0.09 pg ml(-1)) than the Short group (0.8+/-0.4 pulses per 8 h and 0.54+/-0.08 pg ml(-1)).We suggest that the negative feedback efficacy of a long-term progestagen sponge decreased with time and led to an increase in LH pulse frequency and prolonged growth of the ovulatory follicle. We conclude that, in the absence of luteal progesterone, synchronisation with a single progestagen sponge for 14 days resulted in higher LH pulse frequency and ovulation of a persistent follicle with a larger maximum diameter, compared with controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号