首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carvalho P  Goder V  Rapoport TA 《Cell》2006,126(2):361-373
Many misfolded endoplasmic reticulum (ER) proteins are eliminated by ERAD, a process in which substrates are polyubiquitylated and moved into the cytosol for proteasomal degradation. We have identified in S. cerevisiae distinct ubiquitin-ligase complexes that define different ERAD pathways. Proteins with misfolded ER-luminal domains use the ERAD-L pathway, in which the Hrd1p/Hrd3p ligase forms a near stoichiometric membrane core complex by binding to Der1p via the linker protein Usa1p. This core complex associates through Hrd3p with Yos9p, a substrate recognition protein in the ER lumen. Substrates with misfolded intramembrane domains define a pathway (ERAD-M) that differs from ERAD-L by being independent of Usa1p and Der1p. Membrane proteins with misfolded cytosolic domains use the ERAD-C pathway and are directly targeted to the Doa10p ubiquitin ligase. All three pathways converge at the Cdc48p ATPase complex. These results lead to a unifying concept for ERAD that may also apply to mammalian cells.  相似文献   

2.
Usa1p is a recently discovered member of the HRD ubiquitin ligase complex. The HRD pathway is a conserved route of ubiquitin-dependent, endoplasmic reticulum (ER)-associated degradation (ERAD) of numerous lumenal (ERAD-L) and membrane-anchored (ERAD-M) substrates. We have investigated Usa1p to understand its importance in HRD complex action. Usa1p was required for the optimal function of the Hrd1p E3 ubiquitin ligase; its loss caused deficient degradation of both membrane-associated and lumenal proteins. Furthermore, Usa1p functioned in regulation of Hrd1p by two mechanisms. First, Hrd1p self-degradation, which serves to limit the levels of uncomplexed E3, is absolutely dependent on Usa1p and the ubiquitin-like (Ubl) domain of Usa1p. We found that Usa1p allows Hrd1p degradation by promoting trans interactions between Hrd1p molecules. The Ubl domain of Usa1p was required specifically for Hrd1p self-ubiquitination but not for degradation of either ERAD-L or ERAD-M substrates. In addition, Usa1p was able to attenuate the activity-dependent toxicity of Hrd1p without compromising substrate degradation, indicating a separate role in ligase regulation that operates in parallel to stability control. Many of the described actions of Usa1p are distinct from those of Der1p, which is recruited to the HRD complex by Usa1p. Thus, this novel, conserved factor is broadly involved in the function and regulation of the HRD pathway of ERAD.  相似文献   

3.
Gauss R  Sommer T  Jarosch E 《The EMBO journal》2006,25(9):1827-1835
Misfolded proteins of the endoplasmic reticulum (ER) are targeted to the cytoplasm for proteasomal degradation. Key components of this process are ER membrane-bound ubiquitin ligases. These ligases associate with the cytoplasmic AAA-ATPase Cdc48p/p97, which is thought to support the release of malfolded proteins from the ER. Here, we characterize a yeast protein complex containing the ubiquitin ligase Hrd1p and the ER membrane proteins Hrd3p and Der1p. Hrd3p binds malfolded proteins in the ER lumen enabling their delivery to downstream components. Therefore, we propose that Hrd3p acts as a substrate recruitment factor for the Hrd1p ligase complex. Hrd3p function is also required for the association of Cdc48p with Hrd1p. Moreover, our data demonstrate that recruitment of Cdc48p depends on substrate processing by the Hrd1p ligase complex. Thus, the Hrd1p ligase complex unites substrate selection in the ER lumen and polyubiquitination in the cytoplasm and links these processes to the release of ER proteins via the Cdc48p complex.  相似文献   

4.
We report that a toxic polypeptide retaining the potential to refold upon dislocation from the endoplasmic reticulum (ER) to the cytosol (ricin A chain; RTA) and a misfolded version that cannot (termed RTAΔ), follow ER-associated degradation (ERAD) pathways in Saccharomyces cerevisiae that substantially diverge in the cytosol. Both polypeptides are dislocated in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex and subsequently degraded. Canonical polyubiquitylation is not a prerequisite for this interaction because a catalytically inactive Hrd1p E3 ubiquitin ligase retains the ability to retrotranslocate RTA, and variants lacking one or both endogenous lysyl residues also require the Hrd1p complex. In the case of native RTA, we established that dislocation also depends on other components of the classical ERAD-L pathway as well as an ongoing ER–Golgi transport. However, the dislocation pathways deviate strikingly upon entry into the cytosol. Here, the CDC48 complex is required only for RTAΔ, although the involvement of individual ATPases (Rpt proteins) in the 19S regulatory particle (RP) of the proteasome, and the 20S catalytic chamber itself, is very different for the two RTA variants. We conclude that cytosolic ERAD components, particularly the proteasome RP, can discriminate between structural features of the same substrate.  相似文献   

5.
Secretory protein folding is monitored by endoplasmic reticulum (ER) quality control mechanisms. Misfolded proteins are retained and targeted to ER-associated degradation (ERAD) pathways. At their core are E3 ubiquitin ligases, which organize factors that recognize, ubiquitinate, and translocate substrates. Of these, we report that the Hrd1 complex manages three distinct substrate classes. A core complex is required for all classes and is sufficient for some membrane proteins. The accessory factors Usa1p and Der1p adapt the complex to process luminal substrates. Their integration is sufficient to process molecules bearing glycan-independent degradation signals. The presence of Yos9p extends the substrate range by mediating the recognition of glycan-based degradation signals. This modular organization enables the Hrd1 complex to recognize topologically diverse substrates. The Hrd1 system does not directly evaluate the folding state of polypeptides. Instead, it does so indirectly, by recognizing specific embedded signals displayed upon misfolding.  相似文献   

6.
A critical aspect of E3 ubiquitin ligase function is the selection of a particular E2 ubiquitin-conjugating enzyme to accomplish ubiquitination of a substrate. We examined the requirements for correct E2-E3 specificity in the RING-H2 ubiquitin ligase Hrd1p, an ER-localized protein known to use primarily Ubc7p for its function. Versions of Hrd1p containing the RING motif from homologous E3s were unable to carry out Hrd1p function, revealing a requirement for the specific Hrd1p RING motif in vivo. An in vitro assay revealed that these RING motifs were sufficient to function as ubiquitin ligases, but that they did not display the E2 specificity predicted from in vivo results. We further refined the in vitro assay of Hrd1p function by demanding not only ubiquitin ligase activity, but also specific activity that recapitulated both the E2 specificity and RING selectivity observed in vivo. Doing so revealed that correct E2 engagement by Hrd1p required the presence of portions of the Hrd1p soluble cytoplasmic domain outside the RING motif, the placement of the Hrd1p ubiquitin ligase in the ER membrane, and presentation of Ubc7p in the cytosolic context. We confirmed that these conditions supported the ubiquitination of Hrd1p itself, and the transfer of ubiquitin to the prototype substrate Hmg2p-GFP, validating Hrd1p self-ubiquitination as a viable assay of ligase function.  相似文献   

7.
During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.  相似文献   

8.
Studies in yeast indicate that three specialized endoplasmic reticulum-associated degradation (ERAD) pathways, namely ERAD-L, -M, or -C, dispose substrates with structural lesions in the lumenal, transmembrane, or cytosolic domains, respectively. The ubiquitin ligase (E3) Hrd1p and its cooperating partners are required for ERAD-L and -M pathways, whereas Doa10p complex is required for the ERAD-C pathway. We investigated these pathways in mammalian cells by assessing the requirements of the mammalian ERAD E3s, gp78 and Hrd1, in degradation of four substrates each with different type of structural lesions: CD3δ, Z-variant α1-antitrypsin, tyrosinase (C89R) and mutant cystic fibrosis transmembrane conductance regulator (CFTRΔF508). We demonstrated that tyrosinase (C89R) is a substrate for Hrd1 while all others are gp78 substrates. Knockdown of Hrd1 diminished gp78 substrate levels, but silencing of gp78 had no effect on Hrd1's substrate, suggesting that the functional interaction between Hrd1 and gp78 is unidirectional. Furthermore, while Ufd1 is dispensable for gp78-mediated ERAD, it is essential for Hrd1-mediated ERAD. Interestingly, Npl4 was found to be a key component for both pathways. These results suggest that the Hrd1-mediated ERAD requires a well-established retrotranslocation machinery, the p97/VCP-Ufd1-Npl4 complex, whereas the gp78 pathway needs only p97/VCP and Npl4. In addition, the three distinct ERAD pathways described in yeast may not be strictly conserved in mammalian cells as gp78 can function on three substrates with different structural lesions.  相似文献   

9.
Stanley AM  Carvalho P  Rapoport T 《FEBS letters》2011,585(9):1281-1286
Misfolded, luminal endoplasmic reticulum (ER) proteins must be recognized before being degraded by a process called ERAD-L. Using site-specific photocrosslinking in Saccharomyces cerevisiae, we tested luminal interactions of a glycosylated ERAD-L substrate with potential recognition components. Major interactions were observed with Hrd3p. These are independent of the glycan and of other ERAD components, and can occur throughout the length of the unfolded substrate. The lectin Yos9p only interacts with a polypeptide segment distant from the degradation signal. Hrd3p may thus be the first substrate-recognizing component. Der1p appears to have a role in a pathway that is parallel to that involving Hrd3p.  相似文献   

10.
Endoplasmic reticulum‐associated degradation (ERAD) is a cellular pathway for the disposal of misfolded secretory proteins. This process comprises recognition of the misfolded proteins followed by their retro‐translocation across the ER membrane into the cytosol in which polyubiquitination and proteasomal degradation occur. A variety of data imply that the protein import channel Sec61p has a function in the ERAD process. Until now, no physical interactions between Sec61p and other essential components of the ERAD pathway could be found. Here, we establish this link by showing that Hrd3p, which is part of the Hrd‐Der ubiquitin ligase complex, and other core components of the ERAD machinery physically interact with Sec61p. In addition, we study binding of misfolded CPY* proteins to Sec61p during the process of degradation. We show that interaction with Sec61p is maintained until the misfolded proteins are ubiquitinated on the cytosolic side of the ER. Our observations suggest that Sec61p contacts an ERAD ligase complex for further elimination of ER lumenal misfolded proteins.  相似文献   

11.
Denic V  Quan EM  Weissman JS 《Cell》2006,126(2):349-359
How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membrane, including the transmembrane ubiquitin ligase Hrd1p. We further demonstrate that Yos9p, together with Kar2p and Hrd3p, forms a luminal surveillance complex that both recruits nonnative proteins to the core ERAD machinery and assists a distinct sugar-dependent step necessary to commit substrates for degradation. When Hrd1p is uncoupled from the Yos9p surveillance complex, degradation can occur independently of the requirement for glycosylation. Thus, Yos9p/Kar2p/Hrd3p acts as a gatekeeper, ensuring correct identification of terminally misfolded proteins by recruiting misfolded forms to the ERAD machinery, contributing to the interrogation of substrate sugar status, and preventing glycosylation-independent degradation.  相似文献   

12.

Background

Defects in protein folding are recognized as the root of many neurodegenerative disorders. In the endoplasmic reticulum (ER), secretory proteins are subjected to a stringent quality control process to eliminate misfolded proteins by the ER-associated degradation (ERAD) pathway. A novel ERAD component Usa1 was recently identified. However, the specific role of Usa1 in ERAD remains obscure.

Methodology/Principal Findings

Here, we demonstrate that Usa1 is important for substrate ubiquitylation. Furthermore, we defined key cis-elements of Usa1 essential for its degradation function. Interestingly, a putative proteasome-binding motif is dispensable for the functioning of Usa1 in ERAD. We identify two separate cytosolic domains critical for Usa1 activity in ERAD, one of which is involved in binding to the Ub-protein ligase Hrd1/Hrd3. Usa1 may have another novel role in substrate ubiquitylation that is separate from the Hrd1 association.

Conclusions/Significance

We conclude that Usa1 has two important roles in ERAD substrate ubiquitylation.  相似文献   

13.
Misfolded proteins in the endoplasmic reticulum (ER) are exported to the cytosol for degradation by the proteasome in a process known as ER-associated degradation (ERAD). CPY* is a well characterized ERAD substrate whose degradation is dependent upon the Hrd1 complex. However, although the functions of some of the components of this complex are known, the nature of the protein dislocation channel remains obscure. Sec61p has been suggested as an obvious candidate because of its role as a protein-conducting channel through which polypeptides are initially translocated into the ER. However, it has not yet been possible to functionally dissect any role for Sec61p in dislocation from its essential function in translocation. By changing the translocation properties of a series of novel ERAD substrates, we are able to separate these two events and find that functional Sec61p is essential for the ERAD-L pathway.  相似文献   

14.
Proteins are translocated into the endoplasmic reticulum (ER) of cells in an unfolded state, and acquire their native conformation in the ER lumen after signal peptide cleavage. ER-associated degradation (ERAD) of folding-incompetent protein chains is mediated by the protein complexes residing in the ER membrane. We study the architecture and function of one of these, the HRD complex assembled around the E3 ubiquitin ligase Hrd1. The recognition of ERAD substrates is linked to the maturation of their carbohydrate structures. The HRD complex-associated lectin Yos9 is involved in ERAD substrate recognition by binding carbohydrates through its mannose-6-phosphate receptor homology (MRH) domain. We have determined the crystal structure of a central domain of Yos9, adjacent to the MRH domain, which was previously annotated as interaction region with the HRD subunit Hrd3 (Hanna et al., 2012). We find that this domain does not support Hrd3 association which we map to the N-terminal half of Yos9 instead. In contrast, the domain has a function in Yos9 dimerization as seen in the crystal structure, in various solution experiments and as supported by mutagenesis of dimer interface residues. The dimerization of the ER-luminal Yos9, in conjunction with studies of the cytosolic domain of the HRD component Usa1 (Horn et al., 2009) and other biochemical data thus supports a model of a HRD complex that exists and functions as a dimer or a higher multimer. The delivery of ubiquitinated ERAD substrates to the proteasome is mediated by the cytosolic AAA ATPase Cdc48 (p97 in mammalian cells). The p97 (VCP) serves a wide variety of cellular functions in addition to its role in ERAD, including organelle membrane fusion, mitosis, DNA repair, and apoptosis. These different functions are linked to the binding of adaptor proteins to p97, many of which contain ubiquitin regulatory X (UBX) domains. One of these adaptors, ASPL (alveolar soft part sarcoma locus), uses a substantially extended UBX domain for binding to the N domain of p97 where a lariat-like, mostly α-helical extension wraps around one subunit of p97. By this binding ASPL triggers the dissociation of functional p97 hexamers leading to partial inactivation of the AAA ATPase. To the best of our knowledge, this is the first time that the structural basis for adaptor protein-induced inactivation by hexamer dissociation of p97 and, indeed, any AAA ATPase has been demonstrated. This observation has far reaching implications for AAA ATPase-regulated processes.  相似文献   

15.
ER signaling in unfolded protein response   总被引:11,自引:0,他引:11  
Kaneko M  Nomura Y 《Life sciences》2003,74(2-3):199-205
Abnormally folded proteins are susceptible to aggregation and accumulation in cells, ultimately leading to cell death. To protect cells against such dangers, expression of various genes including molecular chaperones can be induced and ER-associated protein degradation (ERAD) activated in response to the accumulation of unfolded protein in the endoplasmic reticulum (ER). This is known as the unfolded protein response (UPR). ERAD requires retrograde transport of unfolded proteins from the ER back to the cytosol via the translocon for degradation by the ubiquitin-proteasome system. Hrd1p is a UPR-induced ER membrane protein that acts as a ubiquitin ligase (E3) in the ERAD system. Hrd3p interacts with and stabilizes Hrd1p. We have isolated and identified human homologs (HRD1 and SEL1/HRD3) of Saccharomyces cerevisiae Hrd1p and Hrd3p. Human HRD1 and SEL1 were up-regulated in response to ER stress and overexpression of human IRE1 and ATF6, which are ER stress-sensor molecules in the ER. HEK293T cells overexpressing HRD1 showed resistance to ER stress-induced cell death. These results suggest that HRD1 and SEL1 are up-regulated by the UPR and contribute to protection against the ER stress-induced cell death by degrading unfolded proteins accumulated in the ER.  相似文献   

16.
Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.  相似文献   

17.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is required for ubiquitin-mediated destruction of numerous proteins. ERAD occurs by processes on both sides of the ER membrane, including lumenal substrate scanning and cytosolic destruction by the proteasome. The ER resident membrane proteins Hrd1p and Hrd3p play central roles in ERAD. We show that these two proteins directly interact through the Hrd1p transmembrane domain, allowing Hrd1p stability by Hrd3p-dependent control of the Hrd1p RING-H2 domain activity. Rigorous reevaluation of Hrd1p topology demonstrated that the Hrd1p RING-H2 domain is located and functions in the cytosol. An engineered, completely lumenal, truncated version of Hrd3p functioned normally in both ERAD and Hrd1p stabilization, indicating that the lumenal domain of Hrd3p regulates the cytosolic Hrd1p RING-H2 domain by signaling through the Hrd1p transmembrane domain. Additionally, we identified a lumenal region of Hrd3p dispensable for regulation of Hrd1p stability, but absolutely required for normal ERAD. Our studies show that Hrd1p and Hrd3p form a stoichiometric complex with ERAD determinants in both the lumen and the cytosol. The HRD complex engages in lumen to cytosol communication required for regulation of Hrd1p stability and the coordination of ERAD events on both sides of the ER membrane.  相似文献   

18.
Terminally misfolded or unassembled proteins in the early secretory pathway are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). How substrates of this pathway are recognized within the ER and delivered to the cytoplasmic ubiquitin-conjugating machinery is unknown. We report here that OS-9 and XTP3-B/Erlectin are ER-resident glycoproteins that bind to ERAD substrates and, through the SEL1L adaptor, to the ER-membrane-embedded ubiquitin ligase Hrd1. Both proteins contain conserved mannose 6-phosphate receptor homology (MRH) domains, which are required for interaction with SEL1L, but not with substrate. OS-9 associates with the ER chaperone GRP94 which, together with Hrd1 and SEL1L, is required for the degradation of an ERAD substrate, mutant alpha(1)-antitrypsin. These data suggest that XTP3-B and OS-9 are components of distinct, partially redundant, quality control surveillance pathways that coordinate protein folding with membrane dislocation and ubiquitin conjugation in mammalian cells.  相似文献   

19.
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.  相似文献   

20.
Accumulation of aberrant proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response pathway that helps the cell to survive under these stress conditions. Herp is a mammalian ubiquitin domain protein, which is strongly induced by the unfolded protein response. It is involved in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, which is found in high molecular mass complexes of the ER membrane. Here we present the first evidence that Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like (UBL) domain-dependent manner. We found that upon exposure of cells to ER stress, elevation of Herp steady state levels is accompanied by an enhanced association of Herp with pre-existing Hrd1. Hrd1-associated Herp is rapidly degraded and substituted by de novo synthesized Herp, suggesting a continuous turnover of the protein at Hrd1 complexes. Further analysis revealed the presence of multiple Hrd1 copies in a single complex enabling binding of a variable number of Herp molecules. Efficient ubiquitylation of the Hrd1-specific ERAD substrate α1-antitrypsin null Hong Kong (NHK) required the presence of the Herp UBL domain, which was also necessary for NHK degradation. In summary, we propose that binding of Herp to Hrd1-containing ERAD complexes positively regulates the ubiquitylation activity of these complexes, thus permitting survival of the cell during ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号