首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用空间代替时间的样地调查方法,利用异速生长方程和一元材积表计算不同林龄桦木林的生物量、生产力与材积,结果表明,桦木林乔木层及平均单株地上生物量均随林龄增加而增加,在50 a时达到最大;生产力则先增加而后逐渐减少,乔木层30 a时生产力为7.88 t.hm-.2a-1,到40 a和50 a时,分别下降到5.17 t.hm-.2a-1和1.19.thm-.2a-1;单株平均生产力在30 a时达到最大值1.13 kg.a-1,40 a时下降为0.96 kg.a-1,50 a时略有上升。林分蓄积量随林龄增加而增加,平均生长量在50 a达到最大值3.78 m.3hm-2,连年生长量在30 a时达到最大值6.07 m.3hm-2。平均单株材积增长速度随林龄增加而增加,50 a时平均生长量和连年生长量达到最大值。  相似文献   

2.
Nutrient cycling within three Pinus sylvestris stands was studied in eastern Finland. The aim of the study was to determine annual fluxes and distribution of N, P, K, Ca, Mg, Zn, Fe, B, and Al in the research stands. Special emphasis was put on determining the importance of different fluxes, especially the internal cycle within the trees in satisfying the tree nutrient requirements for biomass production. The following nutrient fluxes were included, input; free precipitation and throughfall, output; percolation through soil profile, biological cycle; nutrient uptake from soil, retranslocation within trees, return to soil in litterfall, release by litter decomposition. The distribution of nutrients was determined in above- and belowground tree compartments, in ground and field vegetation, and in soil.The nitrogen use efficiencies were 181, 211 and 191 g of tree aboveground dry matter produced per g of N supplied by uptake and retranslocation in the sapling, pole stage and mature stands, respectively. Field vegetation was more efficient in nitrogen use than trees. Stand belowground/aboveground and fine root/coarse root biomass ratios decreased with tree age. With only slightly higher fine root biomass, almost three times more nitrogen had to be taken-up from soil for biomass production in the mature stand than in the sapling stand.The annual input-output balances of most nutrients were positive; throughfall contained more nutrients than was lost in mineral soil leachate. The sulphate flux contributed to the leaching of cations, especially magnesium, from soil in the mature stand.Retranslocation supplied 17–42% of the annual N, P and K requirements for tree aboveground biomass production. Precipitation and throughfall were important in transferring K and Mg, and also N in the sapling stand. Litterfall was an important pathway for N, Ca, Mg and micro nutrients, especially in the oldest stands.  相似文献   

3.
This study examined differences in stand structure, tree species richness, and tree species diversity in relation to population density in Kampong Thom Province, Cambodia. Tree data were obtained from a 1997 forest inventory involving 60 clusters (540 plots) systematically distributed over 30% of the provincial forest area. Spatially referenced population data were obtained from the 1998 national population census. The average number of trees per cluster was 356/ha, the average basal area, 23 m2/ha, the average stand volume, 217 m3/ha, and the average aboveground biomass, 273 Mg/ha for all trees of DBH 10 cm and larger. The average species richness per cluster was 37 species, while average species diversity was measured as 0.916 using Simpson’s index and 2.98 by Shannon’s index. Significant negative correlations were generally found between population density surrounding clusters and tree density, basal area, stand volume, aboveground biomass, and species richness and diversity for three examined diameter classes (DBH of 10–30, ≥30, and ≥10 cm). As the distance from clusters for calculating population density increased, the correlation levels increased up to 5 or 7 km, depending on the variables and diameter class, and then stayed relatively constant for stand structure variables and decreased for species richness and diversity. The results indicate that evidence of disturbance was more pronounced at higher population density up to around 5 to 7 km. We suggest that introduction of greater controls on human disturbance should be a high priority for resource management and conservation in Kampong Thom Province and, presumably, Cambodia as a whole.  相似文献   

4.
Summary Tannin, cell wall, and nitrogen composition of green foliage and needle litter of similar-aged Douglas-fir (Pseudotsuga menziesii Mirb. Franco) from two stands differing in density and crown closure were compared. Trees in the closed-canopy stand had a lower basal area growth rate than those in the open-canopy stand. Stands did not differ in wood basal area/ha or forest floor C/N ratios, but the closed-canopy stand had a significantly larger accumulation of forest floor biomass and significantly higher levels of field-extractable nitrogen and nitrogen mineralization rates. Green foliage from trees in the closed-canopy stand had significantly lower nitrogen, astringency, and lignin contents, but higher cellulose concentration than trees in the open-canopy stand. These trends, inconsistent with the inverse relationship often observed between nitrogen and polyphenol contents of foliage, may result from differences in relative resource availability in the two stands. In contrast to green foliage, needle litter from the two stands had comparable contents of nitrogen, cellulose, and lignin, but astringency was significantly higher in litter from the closed-canopy stand. It is suggested that, within the constraints imposed by site conditions, evergreens may alter the tannin composition of senescing foliage, potentially affecting herbivory and decomposition differently.  相似文献   

5.
Increased fire activity within boreal forests could affect global terrestrial carbon (C) stocks by decreasing stand age or altering tree recruitment, leading to patterns of forest regrowth that differ from those of pre-fire stands. To improve our understanding of post-fire C accumulation patterns within boreal forests, we evaluated above- and belowground C pools within 17 Cajander larch (Larix cajanderi) stands of northeastern Siberia that varied in both years since fire and stand density. Early-successional stands (<20-year old) exhibited low larch recruitment, and consequently, low density, aboveground larch biomass, and aboveground net primary productivity (ANPPtree). Mid-successional stands (21- to 70-year old) were even-aged with considerable variability in stand density. High-density mid-successional stands had 21 times faster rates of ANPPtree than low-density stands (252 vs. 12?g?C?m?2?y?1) and 26 times more C in aboveground larch biomass (2,186 vs. 85?g?C?m?2). Density had little effect on total soil C pools. During late-succession (>70-year old), aboveground larch biomass, ANPPtree, and soil organic layer C pools increased with stand age. These stands were low density and multi-aged, containing both mature trees and new recruits. The rapid accumulation of aboveground larch biomass in high-density, mid-successional stands allowed them to obtain C stocks similar to those in much older low-density stands (~8,000?g?C?m?2). If fire frequency increases without altering stand density, landscape-level C storage could decline, but if larch density also increases, large aboveground C pools within high-density stands could compensate for a shorter successional cycle.  相似文献   

6.
Aboveground tree biomass of Korean pine (Pinus koraiensis Sieb. et Zucc.) was determined for a natural forest of Korean pine and mixed deciduous trees and seven age classes of plantation forests in central Korea. Regression analyses of the dry weights of stem wood, stem bark, branches, and needles versus diameter at breast height were used to calculate regression equations of the form of log Y = a + b log X. Biomass of Korean pine in the mixed forest was 118 Mg ha(-1), and biomass in the plantations was linearly related to stand age, ranging from 52.3 Mg ha(-1) in 11 to 20-year-old stands to 317.9 Mg ha(-1) in 71 to 80-year-old stands. The proportions of stem wood and stem bark in the total aboveground biomass decreased with stand age while those of branch and needle increased. Specific leaf area of Korean pine ranging from 35.2 to 52.1 cm2 g(-1) was significantly different among crown positions and needle ages; in general, lower crown position and current needles had the greatest surface area per unit dry weight.  相似文献   

7.
We examined aboveground biomass dynamics, aboveground net primary production (ANPP), and woody detritus input in an old Sequoia sempervirens stand over a three-decade period. Our estimates of aboveground biomass ranged from 3300 to 5800 Mg ha−1. Stem biomass estimates ranged from 3000 to 5200 Mg ha−1. Stem biomass declined 7% over the study interval. Biomass dynamics were patchy, with marked declines in recent tree-fall patches <0.05 ha in size. Larger tree-fall patches approaching 0.2 ha in size were observed outside the study plot. Our estimates of ANPP ranged from 6 to 14 Mg ha−1yr−1. Estimates of 7 to 10 Mg ha−1yr−1 were considered to be relatively accurate. Thus, our estimates based on long-term data corroborated the findings of earlier short-term studies. ANPP of old, pure stands of Sequoia was not above average for temperate forests. Even though production was potentially high on a per stem basis, it was moderate at the stand level. We obtained values of 797 m3 ha−1 and 262 Mg ha−1 for coarse woody detritus volume and mass, respectively. Fine woody detritus volume and mass were estimated at 16 m3 ha−1 and 5 Mg ha−1, respectively. Standing dead trees (or snags) comprised 7% of the total coarse detritus volume and 8% of the total mass. Coarse detritus input averaged 5.7 to 6.9 Mg ha−1yr−1. Assuming steady-state input and pool of coarse detritus, we obtained a decay rate constant of 0.022 to 0.026. The old-growth stand of Sequoia studied had extremely high biomass, but ANPP was moderate and the amount of woody detritus was not exceptionally large. Biomass accretion and loss were not rapid in this stand partly because of the slow population dynamics and low canopy turnover rate of Sequoia at the old-growth stage. Nomenclature: Hickman (1993).  相似文献   

8.
基于树木年轮学与标准地调查法, 研究了川西亚高山林区3种恢复森林类型生物量、蓄积量及生产力动态变化特征, 旨在尝试年轮学在森林生长过程反演中的运用, 并探索不同恢复模式下森林生物量和蓄积量的动态变化。结果表明, 不同恢复类型发育至20年以后, 均进入生长加速期, 平均胸径间差异逐渐显著, 人工云杉(Picea asperata)林胸径增长最快, 明显高于天然恢复的次生桦木(Betula spp.)林和次生针阔混交林。在恢复过程中, 次生针阔混交林一直保持最高的林分平均地上生物量与林分蓄积量, 其地上平均生物量一直显著高于人工云杉林(p < 0.05), 在20年以后显著高于次生桦木林(p < 0.05)。与人工云杉林相比, 次生桦木林在25年前具有相对较高的生物量, 而在25年之后则低于人工云杉林。在0-20年桦木林林分蓄积量略高于云杉林, 而20年以后, 云杉林蓄积量则超过桦木林。不同恢复类型的生产力大小对比显示, 30年之前, 次生针阔混交林>次生桦木林>人工云杉林, 30年之后, 针阔混交林生产力仍然最高, 而人工云杉林则超过次生桦木林。川西林区次生针阔混交林恢复模式在生物量和蓄积量积累方面均具有显著优势。  相似文献   

9.
林龄和竞争对日本落叶松各组分生物量异速关系的影响   总被引:1,自引:0,他引:1  
基于7-、17-、30-和40年生日本落叶松生物量测定数据,应用方差分析和多重比较分析了林龄和林分内树木竞争类型(优势木、平均木和被压木)对各组分生物量分配比例和异速关系的影响,构建了含林龄和树木竞争类型作为哑变量的生物量异速方程,为准确估算日本落叶松人工林生物量和碳储量提供依据。结果表明:(1)林龄显著影响生物量分配比例的异速关系。随林龄增加干生物量比例增大,枝叶生物量比例减小,根生物量逐渐稳定。加入林龄的干、枝和叶生物量方程显著改善。年龄效应在幼龄林阶段作用最显著,需单独构建生物量模型。(2)树木竞争类型对生物量分配的影响小于林龄。立地条件一致下,虽然相同胸径的优势木比劣势木积累更多的枝叶生物量和少的干生物量,但它们分配生物量到不同器官的比例和方式是基本相同的,林内竞争不会导致生物量分配规律由"异速关系理论"向"环境优先理论"转化。因此,常规采用平均木法估算各组分生物量是可行的。(3)在近成熟林分中不同竞争类型树木的根生物量分配比例均较为稳定,采用根茎比比值来估算根生物量是可行的。  相似文献   

10.
林木分化对兴安落叶松异速生长方程和生物量分配的影响   总被引:4,自引:0,他引:4  
李巍  王传宽  张全智 《生态学报》2015,35(6):1679-1687
林木因对资源竞争而产生分化,从而影响林木的异速生长方程和生物量分配,但其影响程度还不清楚。采用林木相对直径法将38株兴安落叶松(Larix gmelinii)样木在林分中的分化等级分为优势木、中等木和被压木,量化林木分化对林木异速生长方程和生物量分配的影响。结果显示:生物量组分异速生长方程多以胸径(DBH)为自变量为好,但以枝下高处的树干直径为自变量估测其枝、叶生物量时更精确。在一定的胸径范围内,同一胸径下不同林木分化等级的地下部分各组分生物量没有显著差异(P0.05),但优势木分配更多的生物量给枝和叶,中等木比优势木分配更多的生物量给树干,中等木比被压木分配更多的生物量给地上部分,而且被压木和中等木的树高显著高于优势木。除根茎生物量之外,不同林木分化等级的生物量组分(包括枝、叶、树干和根系)的相对分配比例无显著差异(P0.05),根冠比保持相对稳定。这些结果表明,主要由竞争而引起的林木分化改变了兴安落叶松地上生物量组分的异速生长和分配,但其相对分配格局较为保守。  相似文献   

11.
Adequate management of forest plantation requires estimation of growth and biomass yield and consequently, the fitting of functions for estimating biomass. Growth, biomass yield and biomass functions for estimating biomass of Nauclea diderrichii plantations in Omo forest reserve, Nigeria are described. Data were obtained from 30 temporary sample plots selected from stands that are 5-30 years old. A total of 81 trees were harvested for biomass estimation. Mean tree diameter at breast height (dbh), total height and stand bole volume ranged from 9.6 to 29.3 cm; 9.0 to 23.6m and 23.27 to 535.52 m(3)ha(-1), respectively while Total Above Ground Biomass (TAGB) varied from 32.5 t ha(-1) to 287.5 t ha(-1) between 5 and 30 years. Biomass allocations to stem, branch and foliage were 84.5%, 13.5% and 3%, respectively. All biomass components could be described precisely by dbh alone (R(adj)(2)>0.97), with very low standard errors of estimates. Little improvement in the precision of the functions was achieved by including total height. In addition, the residuals of regression functions with only dbh were generally more constrained than those that included total height. Consequently, the functions with dbh alone and its derivative as independent variables were recommended for estimating biomass of opepe in Nigeria.  相似文献   

12.
The effect of harvesting the aboveground biomass on the growth of Phragmites australis in the subsequent growing season was investigated following cutting in June or July. Seasonal changes in rhizome biomass and total nonstructural carbohydrate (TNC) in seven age categories, from newly formed to six-years-old, were monitored for the two treatment stands and a control stand. The growth of the stands, as indicated by the aboveground biomass, showed a significant decline due to cutting in June but did not show a significant difference due to cutting in July, compared to that of the control stand. The timing of harvesting of aboveground biomass affected the annual rhizome resource allocation. A similar trend was observed for the pattern of resource allocation, as described by biomass variation of different rhizome-age categories for July-cut and control stands. However, the biomass of June-harvested rhizome categories tended to be smaller than the other two stands, indicating substantially reduced resource storage as a direct result of harvesting the aboveground biomass during the previous growing season. This implies that cutting of aboveground biomass in June is a better option for control of P. australis stands than cutting later in summer.  相似文献   

13.
Biomass conversion and expansion factors (BCEF) which convert tree stem volume to whole tree biomass and biomass allocation patterns in young trees were studied in order to estimate tree and stand biomass in naturally regenerated forests. European beech (Fagus sylvatica L.), Sessile oak (Quercus petraea (Mattuschka) Liebl.) and Scots pine (Pinus sylvestris L.) stands were compared. Seven forest stands of each species were chosen to cover their natural distribution in Slovakia. Species-specific BCEF are presented, generally showing a steep decrease in all species in the smallest trees, with the only exception in the case of branch BCEF in beech which grows with increasing tree size. The values of BCEF for all tree compartments stabilise in all species once trees reach about 60–70-mm diameter at base. As they grow larger, all species increase their allocation to stem and branches, while decreasing the relative growth of roots and foliage. There are, however, clear differences between species and also between broadleaves and conifers in biomass allocation. This research shows that species-specific coefficients must be used if we are to reduce uncertainties in estimates of carbon stock changes by afforestation and reforestation activities.  相似文献   

14.
Biomass and biomass expansion factor functions are important in wood resource assessment, especially with regards to bioenergy feedstocks and carbon pools. We sampled 48 poplar trees in seven stands with the purpose of estimating allometric models for predicting biomass of individual tree components, stem-to-aboveground biomass expansion factors (BEF) and stem basic densities of the OP42 hybrid poplar clone in southern Scandinavia. Stand age ranged from 3 to 31 years, individual tree diameter at breast height (dbh) from 1.2 to 41 cm and aboveground tree biomass from 0.39 to 670 kg. Models for predicting total aboveground leafless, stem and branch biomass included dbh and tree height as predictor variables and explained more than 97 % of the total variation. The BEF was approaching 2.0 for the smallest trees but declined with increasing tree size and stabilized around 1.2 for trees with dbh >10 cm. Average stem basic density was more than 400 kg m?3 for the smallest trees but declined with increasing tree height and stabilized around 355 kg m?3, at a tree height of about 20 m. Existing biomass functions from the literature all underestimated the measured sample tree biomass. Possible explanations include not only differences in competition among trees in the examined stands and site conditions but also differences in sampling procedures. We observed that basic density increased with height above the ground. This trend may have led to the observed underestimation by existing biomass functions including only few samples from the lower end of the stems.  相似文献   

15.
In the past 30 years, many stand structural attributes (SSAs) have been suggested and structural indices have been developed to describe the complex structure of forests. Most studies, however, have explored the potential and limits of structural measures to quantify forest structures by applying multiple measures to one stand or few measures to several stands. However, the interdependencies of multiple structural attributes across many stands of different forest management types and developmental stages have not yet been explored. Using 20 structural attributes and 124 completely inventoried 1 ha sized stands we tested to what extent structural characteristics reflect different stand types and management intensities, and how these characteristics change over time. We found that single SSAs do not show the clear gradients that they were intended to reflect, suggesting that stand structure should be described by multiple structural attributes, and that these should represent different structural aspects (including vertical, and horizontal heterogeneity, density, and diversity). A principal component analysis showed that combining several SSAs, allowed us to distinguish between stand types. The structure of mature stands remained rather constant over the observed period of about 6 years, while that of young stands changed more rapidly due to ingrowth and mortality. The older the stands, the less the large trees contributed to stand growth relative to their size. We conclude that multiple stand structural attributes are needed to characterise stand types, management effects and to explain stand productivity.  相似文献   

16.
We studied how the dominant factor affecting stem volume growth changes during stand development in a monoclonal stand of Cryptomeria japonica D. Don. Stem analysis was used to compare growth history of trees in an unthinned plot (closed canopy) and a thinned plot (open canopy). In the unthinned plot, the dominant factor affecting stem volume growth was basal area (BA) before canopy closure, whereas neighborhood competition index (CI) was the dominant factor after canopy closure. In contrast, the dominant factor affecting stem volume in the thinned plot was BA throughout stand development. Spearman’s rank correlation coefficient between BA and CI continued to increase after canopy closure and size rank among individuals became increasingly fixed. Our results indicated that stem volume growth shifts from size-dependent to competition-dependent growth at canopy closure. The apparent correlation between tree size and growth rate observed in many previous studies may be the result of competition-mediated positive feedback between size and growth.  相似文献   

17.
Batzer  Darold P.  Jackson  C. Rhett  Mosner  Melinda 《Hydrobiologia》2000,441(1):123-132
We studied 12 small, seasonally flooded, depressional wetlands on the Atlantic Coastal Plain of Georgia, U.S.A. Each wetland was embedded in stands of managed plantation pine. The pine trees surrounding each wetland had been harvested and replanted beginning in 1997 (2 sites), 1995 (2 sites), 1993 (1 site), 1988 (2 sites), 1984 (2 sites) or 1975 (3 sites). Regressions of various environmental variables with harvest histories indicated that those wetlands surrounded by smaller trees had greater light levels, water temperatures, pH, herbaceous plant cover and biomass, terrestrial invertebrate diversities and numbers, and water flea numbers, and lower water electrical conductivities and aquatic oligochaete numbers than those wetlands surrounded by more mature trees. Detected variations in hydroperiod, water depth, dissolved oxygen levels, sediment inputs, macrophyte diversity, periphyton biomass and densities of most aquatic invertebrates were not clearly correlated with past histories of peripheral tree harvest. This study suggests that harvesting trees around small wetlands initiates physical and ecological changes within the embedded habitats and that changes can persist for up to 15 years.  相似文献   

18.
Allometric equations for the estimation of tree volume and aboveground biomass in a tropical humid forest were developed based on direct measurements of 19 individuals of seven tree species in Northern Costa Rica. The volume and the biomass of the stems represented about two‐thirds of the total volume and total aboveground biomass, respectively. The average stem volume varied between 4 and 11 Mg/tree and the average total aboveground biomass ranged from 4 to 10 mg/tree. The mean specific gravity of the sampled trees was 0.62 ± 0.06 (g/cm3). The average biomass expansion factor was 1.6 ± 0.2. The best‐fit equations for stem and total volume were of logarithmic form, with diameter at breast height (R2= 0.66 ? 0.81) as an independent variable. The best‐fit equations for total aboveground biomass that were based on combinations of diameter at breast height, and total and commercial height as independent variables had R2 values between 0.77 and 0.87. Models recommended for estimating total aboveground biomass are based on diameter at breast height, because the simplicity of these models is advantageous. This variable is easy to measure accurately in the field and is the most common variable recorded in forest inventories. Two widely used models in literature tend to underestimate aboveground biomass in large trees. In contrast, the models developed in this study accurately estimate the total aboveground biomass in these trees.  相似文献   

19.
We compared four types of 30‐year‐old forest stands growing on spoil of opencast oil shale mines in Estonia. The stand types were: (1) natural stands formed by spontaneous succession, and plantations of (2) Pinus sylvestris (Scots pine), (3) Betula pendula (silver birch), and (4) Alnus glutinosa (European black alder). In all stands we measured properties of the tree layer (species richness, stand density, and volume of growing stock), understory (density and species richness of shrubs and tree saplings), and ground vegetation (aboveground biomass, species richness, and species diversity). The tree layer was most diverse though sparse in the natural stands. Understory species richness per 100‐m2 plot was highest in the natural stand, but total stand richness was equal in the natural and alder stands, which were higher than the birch and pine stands. The understory sapling density was lower than 50 saplings/100 m2 in the plantations, while it varied between 50 and 180 saplings/100 m2 in the natural stands. Growing stock volume was the least in natural stands and greatest in birch stands. The aboveground biomass of ground vegetation was highest in alder stands and lowest in the pine stands. We can conclude that spontaneous succession promotes establishment of diverse vegetation. In plantations the establishment of diverse ground vegetation depends on planted tree species.  相似文献   

20.
亚高山针叶林人工恢复过程中生物量和材积动态研究   总被引:7,自引:2,他引:7  
研究了近70年不同林龄亚高山人工云杉林的地上部分生物量及材积变化规律.结果表明,20年林龄前的云杉单株生物量增长缓慢,以小枝和叶生长为主,约占50%;20年以后,单株生物量增长加快,以树干积累为主,大体上超过60%;30年后增长速度相对减慢,自40年开始并保持快速增长.云杉种群生物量表现出类似的增长,但林龄在30至50年间增长速度减慢.群落生物量总体上持续增长,但灌木层生物量在初期快速增长,从20年林龄后逐渐减少;草本层生物量则一直减少,到70年时仅占不足0.2%.在近70年人工恢复过程中,云杉单株材积平均生长量和连年生长量都逐渐增大,越在后期生长越迅速;林分蓄积则在30至50年林龄之间有一段连年生长量相对减小的时期.根据树干解析资料,建立了70年人工云杉林的单株材积与胸径和树高的数学模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号