首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human serum albumin (HSA) is known to exist as N (pH approximately 7), B (pH approximately 9), and F (pH approximately 3.5) isomeric forms and an equilibrium intermediate state (I) accumulate in the urea induced unfolding pathway of HSA around 4.8-5.2 M urea concentrations. These states displayed characteristic structure and functions. To elucidate the ciprofloxacin (CFX) binding behavior of HSA, the binding of ciprofloxacin with these conformational states of human serum albumin (HSA) has been investigated by fluorescence spectroscopy. The binding constant (K) for N, B, F, and I conformation of HSA were 6.92 x 10(5), 3.87 x 10(5), 4.06 x 10(5), and 2.7 x 10(5) M(-1) and the number of binding sites (n) were 1.26,1.21, 1.16, and 1.19, respectively. The standard free energy changes (DeltaGbinding(0)) of interaction were found to be -33.3 (N isomer), -31.8 (B isomer), -32 (F isomer), and -30.0 kJ mol(-1) respectively. By using unfolding pathway of HSA, domain II of HSA has been assigned to possess binding site of ciprofloxacin. Plausible correlation between stability of CFX-N and CFX-B complexes and drug distribution have been discussed. At plasma concentration of HSA fraction of free CFX, which contributes potential to its rate of transport across cell membrane, was found to be approximately 80% more for B isomers compared to N isomers of HSA. The conformational changes in two physiologically important isomers of HSA (N and B isomers) upon ciprofloxacin binding were evaluated by measuring far, near-UV CD, and fluorescence properties of the CFX-HSA complex.  相似文献   

2.
It is well known that various physiological factors such as pH, endogenous substances or post-translational modifications can affect the conformational state of human serum albumin (HSA). In a previous study, we reported that both pH- and long chain fatty acid-induced conformational changes can alter the interactive binding of ligands to the two principal binding sites of HSA, namely, site I and site II. In the present study, the effect of metal-catalyzed oxidation (MCO) caused by ascorbate/oxygen/trace metals on HSA structure and the interactive binding between dansyl-L-asparagine (DNSA; a site I ligand) and ibuprofen (a site II ligand) at pH 6.5 was investigated. MCO was accompanied by a time-dependent increase in carbonyl content in HSA, suggesting that the HSA was being oxidized. In addition, The MCO of HSA was accompanied by a change in net charge to a more negative charge and a decrease in thermal stability. SDS-PAGE patterns and α-helical contents of the oxidized HSAs were similar to those of native HSA, indicating that the HSA had not been extensively structurally modified by MCO. MCO also caused a selective decrease in ibuprofen binding. In spite of the changes in the HSA structure and ligand that bind to site II, no change in the interactive binding between DNSA and ibuprofen was observed. These data indicated that amino acid residues in site II are preferentially oxidized by MCO, whereas the spatial relationship between sites I and II (e.g. the distance between sites), the flexibility or space of each binding site are not altered. The present findings provide insights into the structural characteristics of oxidized HSA, and drug binding and drug-drug interactions on oxidized HSA.  相似文献   

3.
The binding of pyridoxal 5'-phosphate to human serum albumin   总被引:1,自引:0,他引:1  
Most of the pyridoxal 5'-phosphate (PLP) in plasma is bound to protein, primarily albumin. Binding to protein is probably important in transporting PLP in the circulation and in regulating its metabolism. The binding of PLP to human serum albumin (HSA) was studied using absorption spectral analysis, equilibrium dialysis, and inhibition studies. The kinetics of the changes in the spectrum of PLP when mixed with an equimolar concentration of HSA at pH 7.4 followed a model for two-step consecutive binding with rate constants of 7.72 mM-1 min-1 and 0.088 min-1. The resulting PLP-HSA complex had absorption peaks at 338 and 414 nm and was reduced by potassium borohydride. The 414-nm peak is probably due to a protonated aldimine formed between PLP and HSA. The binding of PLP to bovine serum albumin (BSA) at equimolar concentrations at pH 7.4 occurred at about 10% the rate of its binding to HSA. The final PLP-BSA complex absorbed maximally at 334 nm and did not appear to be reduced with borohydride. Equilibrium dialysis of PLP and HSA indicated that there were more than one class of binding sites of HSA for PLP. There was one high affinity site with a dissociation constant of 8.7 microM and two or more other sites with dissociation constants of 90 microM or greater. PLP binding to HSA was inhibited by pyridoxal and 4-pyridoxic acid. It was not inhibited appreciably by inorganic phosphate or phosphorylated compounds. The binding of PLP to BSA was inhibited more than its binding to HSA by several compounds containing anionic groups. It is concluded that PLP binds differently to HSA than it does to BSA.  相似文献   

4.
Non-steroidal anti-inflammatory drugs (NSAIDs) are strongly bound to human serum albumin (HSA), mainly to sites I and II. The aim of this study was to characterize the binding site(s) of etodolac enantiomers under physiological conditions (580 μM HSA) using equilibrium dialysis. The protein binding of etodolac enantiomers, alone or in various ratios, was studied in order to evaluate the potential competition between them. Our results showed that (S)-etodolac was more strongly bound to HSA than (R)-etodolac. The displacement of one enantiomer by its antipode was observed only at high concentrations of the competitor, and was more pronounced for the (S)-form. Displacement studies of the enantiomers by specific probes of sites I and II of albumin, dansylamide, and dansylsarcosine, respectively, showed that (R)-etodolac was slightly displaced by both these probes whereas the free concentration of (S)-etodolac increased markedly in the presence of dansylsarcosine. Moreover, the binding of ligands to sites I and II is usually affected by alkaline pH, by chloride ions, and by fatty acids. For etodolac, the presence of 0.1 and 1 M chloride ions and increasing pH (5.5-9) decreased the binding of both enantiomers. The same result was obtained with addition of octanoic acid. Conversely, the addition of oleic, palmitic, or stearic acid to the protein solution increased the binding of (R)-etodolac, but decreased that of its antipode. All these findings suggest that (R)- and (S)-etodolac interact mainly with site II of HSA, and that the (R)-isomer is also bound to site I under physiological conditions. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The binding of salicylate ion to human serum albumin (HSA) was studied in 100 mM potassium phosphate buffer (pH 7.4, 25 degrees C), using equilibrium dialysis and fluorescence titration methods. The protein samples tested were (a) dialyzed human plasma and (b) a commercial preparation of HSA, essentially free of globulin and fatty acids. Independent of the analytical method used, Scatchard and nonlinear regression analyses of the data pointed to a single class of high-affinity salicylate binding sites. On the other hand, the binding parameters were found to be method dependent. K(d) ranged between 25 +/- 2.4 and 62 +/- 15 microM in equilibrium dialysis and between 10 +/- 1.3 and 40 +/- 3.0 microM in fluorescence titration. (The higher limits refer to plasma samples at high [HSA]). Following the same pattern, the apparent stoichiometry of binding (though independent of sample identity and concentration) was higher in equilibrium dialysis (n(app) = 3.2 +/- 0.10) than in fluorescence titration (n(app) 1.9 +/- 0.30). The difference between the two methods could be reconciled by invoking two distinct classes of binding sites (I and II), which had identical (or marginally different) K(d) values, while differing in the magnitude of the fluorescence signal (Deltaf) generated upon ligand binding (Deltaf, PL(I) = Deltaf(I); Deltaf, PL(II) = 0). Further, it was assumed that the state of occupation of class II sites affected the fluorescence efficiency of class I sites, such that Deltaf, PL(I,II) = betaDeltaf(I) (beta = interaction factor). A random binding scheme involving P, PL(I), PL(II), and PL(I,II) was formulated. The model adequately predicted the behavior of the system when monitored through the change in protein fluorescence: Taking K(d) = 25 microM and n(T) = 3, the interaction factor beta was found to be 0.62 +/- 0.10. It was concluded that the correct parameters for the binding of salicylate ion to HSA are K(d) = 25 +/- 2.4 microM and n(T) = 3.2 +/- 0.10, as indicated by equilibrium dialysis of purified HSA. Besides updating information relating to the salicylate binding potential of HSA, this study serves to illustrate a likely complication in the study of protein-ligand interactions by fluorometric methods.  相似文献   

6.
Induced circular dichroism (ICD), or induced chirality, is a phenomenon caused by the fixation of an achiral substance inside a chiral microenvironment, such as the hydrophobic cavities in proteins. Dansylglycine belongs to a class of dansylated amino acids, which are largely used as fluorescent probes for the characterization of the binding sites in albumin. Here, we investigated the ICD in dansylglycine provoked by its binding to human serum albumin (HSA). We found that the complexation of HSA with dansylglycine resulted in the appearance of an ICD band centred at 346 nm. Using this ICD signal and site-specific ligands of HSA, we confirmed that dansylglycine is a site II ligand. The intensity of the ICD signal was dependent on the temperature and revealed that the complexation between the protein and the ligand was reversible. The induced chirality of dansylglycine was susceptive to the alteration caused by the oxidation of the protein. A comparison was made between hypochlorous acid (HOCl) and hypobromous acid (HOBr), and revealed that site II in the protein is more susceptible to alteration provoked by the latter oxidant. These findings suggest the relevance of the aromatic amino acids in the site II, since HOBr is a more efficient oxidant of these residues in proteins than HOCl. The three-dimensional structure of HSA is pH-dependent, and different conformations have been characterised. We found that HSA in its basic form at pH 9.0, which causes the protein to be less rigid, lost the capacity to bind dansylglycine. At pH 3.5, HSA retained almost all of its capacity for binding to dansylglycine. Since the structure of HSA at pH 3.5 is expanded, separating the domain IIIA from the rest of the molecule, we concluded that this separation did not alter its binding capacity to dansylglycine.  相似文献   

7.
In this study, high-performance affinity chromatography was used to characterize the binding of carbamazepine to an immobilized human serum albumin (HSA) column. Frontal analysis was first used to determine the association equilibrium constant and binding capacity for carbamazepine on this column at various temperatures. The non-specific binding of carbamazepine within the column was also considered. The results indicated that carbamazepine had a single binding site on HSA with an association equilibrium constant of 5.3 x 10(3)M(-1) at pH 7.4 and 37 degrees C. This was confirmed through zonal elution self-competition studies. The value of DeltaG for this reaction was -5.35 kcal/mol at 37 degrees C, with an associated change in enthalpy (DeltaH) of -6.45 kcal/mol and a change in entropy (DeltaS) of -3.56 cal/molK. The location of this binding region was examined by competitive zonal elution experiments using probe compounds with known sites on HSA. It was found that carbamazepine had direct competition with l-tryptophan, a probe for the indole-benzodiazepine site of HSA, but allosteric interactions with probes for the warfarin, tamoxifen and digitoxin sites. Changes in the pH, ionic strength, and organic modifier content of the mobile phase were used to identify the predominant forces in the carbamazepine-HSA interaction.  相似文献   

8.
Ethanol effects on warfarin binding to human serum albumin (HSA) have been studied by equilibrium dialysis and fluorescence methods at pH 7.4 in phosphate-buffered saline at 37 degrees C. In the presence of various amounts of ethanol fluorescence intensity of bound warfarin decreased significantly but this intensity reduction was not solely from displacement of bound warfarin from HSA. By comparing fluorescence and equilibrium dialysis data we concluded that fluorescence intensity reduction of warfarin was mainly the result of changes in the surrounding environment of the warfarin binding site by ethanol interaction with HSA and that displacement of bound warfarin was not significant compared to the fluorescence intensity changes. The dissociation constant of warfarin binding to HSA decreased with an increasing amount of ethanol. From the changes in fluorescence intensity upon warfarin binding to HSA with the presence of ethanol ranging from 0 to 5.0% the following dissociation constants (Kd) were determined: 0% ethanol 5.39 +/- 0.2 microM, 0.1% ethanol 5.86 +/- 0.1 microM, 0.3% ethanol 5.83 +/- 0.2 microM, 0.5% ethanol 6.76 +/- 0.1 microM, 1% ethanol 7.01 +/- 0.1 microM, 3% ethanol 9.9 +/- 0.7 microM, 5% ethanol 13.01 +/- 0.1 microM. From the equilibrium dialysis with the same ranges of ethanol presence the following Kd values were obtained: 0% ethanol 6. 62 +/- 1.6 microM, 0.1% ethanol 6.81 +/- 1.1 microM, 0.3% ethanol 8. 26 +/- 2.5 microM, 0.5% ethanol 8.86 +/- 1.9 microM, 1% ethanol 11. 01 +/- 4.2 microM, 3% ethanol 20.75 +/- 2.4 microM, 5% ethanol 21.67 +/- 2.2 microM. The results suggest that warfarin bound to HSA was displaced by ethanol. These data indicate that ethanol influence on warfarin binding to HSA may alter the pharmacokinetics of warfarin.  相似文献   

9.
10.
The binding of Cd(II) and Zn(II) to human serum albumin (HSA) and dog serum albumin (DSA) has been studied by equilibrium dialysis and 113Cd(II)-NMR techniques at physiological pH. Scatchard analysis of the equilibrium dialysis data indicate the presence of at least two classes of binding sites for Cd(II) and Zn(II). On analysis of the high-affinity class of sites, HSA is shown to bind 2.08 +/- 0.09 (log K = 5.3 +/- 0.6) and 1.07 +/- 0.12 (log K = 6.4 +/- 0.8) moles of Cd(II) and Zn(II) per mole of protein, respectively. DSA bound 2.02 +/- 0.19 (log K = 5.1 +/- 0.8), and 1.06 +/- 0.15 (log K = 6.0 +/- 0.2) moles of Cd(II) and Zn(II) per mole of protein, respectively. Competition studies indicate the presence of one high-affinity Cd(II) site on both HSA and DSA that is not affected by Zn(II) or Cu(II), and one high-affinity Zn(II) site on both HSA and DSA that is not affected by Cd(II) or Cu(II). 113Cadmium-HSA spectra display three resonances corresponding to three different sites of complexation. In site I, Cd(II) is most probably coordinated to two or three histidyl residues, site II to one histidyl residue and three oxygen ligands (carboxylate), while for the most upfield site III, four oxygens are likely to be involved in the binding of the metal ion. The 113Cd(II)-DSA spectra display only two resonances corresponding to two different sites of complexation. The environment around Cd(II) at sites I and II on DSA is similar to sites I and II, respectively, on HSA. No additional resonances are observed in any of these experiments and in particular in the low field region where sulfur coordination occurs. Overall, our results are consistent with the proposal that the physiologically important high-affinity Zn(II) and Cd(II) binding sites of albumins are located not at the Cu(II)-specific NH2-terminal site, but at internal sites, involving mostly nitrogen and oxygen ligands and no sulphur ligand.  相似文献   

11.
12.
In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.  相似文献   

13.
The relationship between the two principal ligand binding sites, sites I and II, on human serum albumin (HSA) was quantitatively and qualitatively examined by equilibrium dialysis and fluorescence spectroscopy. Among the three subsite markers to site I, only the binding of dansyl-L-asparagine (DNSA), which is a subsite Ib marker (K. Yamasaki et al., Biochim. Biophys. Acta 1295 (1996) 147), was inhibited by the simultaneous binding of a site II ligand, such as ibuprofen and diazepam. This indicates that, in contrast to subsite Ib, subsites Ia and Ic do not strongly interact with site II. The thermodynamic characteristics for the coupling reaction between DNSA and ibuprofen and between DNSA and diazepam, which gave positive coupling free energies and negative values for both coupling enthalpy and entropy, indicated that the reaction process was entropically driven. Increase of pH from 6.5 to 8.2 caused an increase in coupling constant and entropy for the mutual antagonism between DNSA and the site II ligands on binding to HSA. The site II ligand-induced red-shift of lambda(max) and solvent accessibility of DNSA in subsite Ib were decreased when the albumin molecule was isomerized from the neutral (N) to the base (B) conformation in the physiological pH region. Based on these findings, we conclude that a 'competitive' like strong allosteric regulation exists for the binding of these two ligands to the N conformer, whereas for the B conformer this interaction can be classified as nearly 'independent'. Since the distance between Trp-214, which resides within the site I subdomain, and Tyr-411, which is involved in site II, is increased by 6 A during the N-B transition (N.G. Hagag et al., Fed. Proc. 41 (1982) 1189), we propose a mechanism for the pH-dependent antagonistic binding between subsite Ib and site II, which involves the transmission of ligand-induced allosteric effects from one site to another site, modified by changes in the spatial relationship of sites I and II caused by the N-B transition.  相似文献   

14.
The pH dependence of the uv/visible and CD spectra of the 1:1 Ni(BSA) complex in aqueous solutions is interpreted in terms of a major square-planar form and an octahedral form. At pH 7.4, the two forms, respectively, account for ca. 70% and 30% of the total Ni(II). The two forms are in rapid equilibrium with each other and so both probably involve Ni(II) binding to the N-terminal region of the albumin protein. The kinetics of the equilibrium reaction of Ni(BSA) with His were studied at 37 degrees C in buffered media of pH 7.4 and 9.3. In line with predictions, the two Ni(BSA) forms show markedly different reactivities, with the square-planar form being the more thermodynamically stable and the less reactive. The octahedral form reacts with an observed zero-order dependence on His concentration while the square-planar form shows both zero-order and first-order dependence, the latter being the more dominant. The significance of the slow equilibrium rate at pH 7.4 to the possible physiological role of Ni-albumin in blood serum is discussed.  相似文献   

15.
Biointeraction studies based on high performance affinity chromatography were used to investigate the binding of human serum albumin (HSA) to two major phenytoin metabolites: 5-(3-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH). This was initially examined by conducting self-competition zonal elution experiments in which m-HPPH or p-HPPH were placed in both the mobile phase and injected sample. It was found that each metabolite had a single major binding site on HSA. Competitive zonal elution experiments using l-tryptophan, warfarin, digitoxin, and cis-clomiphene as site-selective probes indicated that m-HPPH and p-HPPH were interacting with the indole-benzodiazepine site of HSA. The estimated association equilibrium constants for m-HPPH and p-HPPH at this site were 3.2 (+/-1.2)x10(3) and 5.7 (+/-0.7)x10(3)M(-1), respectively, at pH 7.4 and 37 degrees C. Use of these metabolites as competing agents for injections of phenytoin demonstrated that m-HPPH and p-HPPH had direct competition with this drug at the indole-benzodiazepine site. However, the use of phenytoin as a competing agent indicated that this drug had additional negative allosteric interactions on the binding of these metabolites to HSA. These results agreed with previous studies on the binding of phenytoin to HSA and its effects on the interactions of HSA with site-selective probes for the indole-benzodiazepine site.  相似文献   

16.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

17.
Human serum albumin (HSA) is an abundant transport protein found in plasma that binds a wide variety of drugs in two primary binding sites (I and II) and can have a significant impact on their pharmacokinetics. We have determined the crystal structures at 2.5 A-resolution of HSA-myristate complexed with the R-(+) and S-(-) enantiomers of warfarin, a widely used anticoagulant that binds to the protein with high affinity. The structures confirm that warfarin binds to drug site I (in subdomain IIA) in the presence of fatty acids and reveal the molecular details of the protein-drug interaction. The two enantiomers of warfarin adopt very similar conformations when bound to the protein and make many of the same specific contacts with amino acid side chains at the binding site, thus accounting for the relative lack of stereospecificity of the HSA-warfarin interaction. The conformation of the warfarin binding pocket is significantly altered upon binding of fatty acids, and this can explain the observed enhancement of warfarin binding to HSA at low levels of fatty acid.  相似文献   

18.
In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA) and ANS - bovine serum albumin (BSA) interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.  相似文献   

19.
Stereoselective binding of etodolac to human serum albumin.   总被引:2,自引:0,他引:2  
The protein binding of etodolac enantiomers was studied in vitro by equilibrium dialysis in human serum albumin (HSA) of various concentrations varying from 1 to 40 g/liter, by addition of each enantiomer at increasing concentrations. In the 1 g/liter solution, at the lowest drug levels, the (R)-form is more bound than its antipode, the contrary being observed at the highest drug levels. For higher albumin concentrations, S was bound in a larger extent than R. Using the displacement of specific markers of HSA sites I and II, studied by spectrofluorimetry, it was suggested that R and S are both bound to site I, while only S is strongly bound to site II.  相似文献   

20.
The bacterial recombinase RecA forms a nucleoprotein filament in vitro with single-stranded DNA (ssDNA) at its primary DNA binding site, site I. This filament has a second site, site II, which binds ssDNA and double-stranded DNA. We have investigated the binding of ssDNA to the RecA protein in the presence of adenosine 5'-O-(thiotriphosphate) cofactor using fluorescence anisotropy. The RecA protein carried out DNA strand exchange with a 5'-fluorescein-labeled 32-mer oligonucleotide. The anisotropy signal was shown to measure oligonucleotide binding to RecA, and the relationship between signal and binding density was determined. Binding of ssDNA to site I of RecA was stable at high NaCl concentrations. Binding to site II could be described by a simple two-state equilibrium, K = 4.5 +/- 1.5 x 10(5) m(-1) (37 degrees C, 150 mm NaCl, pH 7.4). The reaction was enthalpy-driven and entropy-opposed. It depended on salt concentration and was sensitive to the type of monovalent anion, suggesting that anion-dependent protein conformations contribute to ssDNA binding at site II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号