首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbivores reduce plant productivity by removing part of the assimilation surface. Also, they can alter plant traits that affect plant–pollinator interactions and reproductive success. The objective of this study was to evaluate the impact of defoliation by sawfly (Caliroa cerasi) larvae on fruit production and quality in three cultivars of sweet cherry (Prunus avium). We hypothesized that the fruit production and quality is reduced as a consequence of changes in the allocation of resources within the plant in response to partial leaf removal during the previous year. Number of flowers per branch meter was higher in infested trees than in non-infested trees, while the number of fruits per branch meter was similar due to fruit abortion in all cultivars. Fruit quality was significantly affected by herbivory in different traits depending on cultivar. Infested Lapins and Van trees had significantly lower soluble solid content than non-infested trees. Titratable acidity was higher and ripening index was lower in infested Bing and Lapins trees than non-infested trees. Infested Van trees also exhibited a significant decrease in equatorial diameter and fresh fruit weight as well as pulp fresh weight and dry weight of seed compared to non-infested trees. Overall our study highlights that the direct impact of herbivores at leaf level has lagged effects on productivity in terms of fruit and seed quality in the year following the leaf damage.  相似文献   

2.
We investigated functional coordination between branch hydraulic properties and leaf functional traits among nine miombo woodlands canopy tree species differing in habitat preference and phenology. Specifically, we were seeking to answer the question: are branch hydraulic properties coordinated with leaf functional traits linked to plant drought tolerance in seasonally dry tropical forests and what are the implications for species habitat preference? The hydraulic properties investigated in this study were stem area specific hydraulic conductivity (K S), Huber value (H v), and xylem cavitation vulnerability (??50). The leaf functional traits measured were specific leaf area (SLA), leaf dry matter content (LDMC), and mean leaf area (MLA). Generalists displayed significantly (P?<?0.05) higher cavitation resistance (??50) and SLA, but lower sapwood specific hydraulic conductivity (K S), leaf specific conductivity (K L), MLA, and LDMC than mesic specialists. Although MLA was uncorrelated with ??50, we found significant (P?<?0.05) positive and negative correlations between plant hydraulic properties and leaf functional traits linked to plant drought tolerance ability, indicating that the interactions between branch hydraulics and leaf functional traits related to plant drought tolerance ability may influence tree species habitat preference in water-limited ecosystems.  相似文献   

3.
  • Excess vegetative growth and irregular fruit‐bearing are often undesirable in horticultural practice. However, the biological mechanisms underlying these traits in fruit trees are not fully understood. Here, we tested if growth vigour and susceptibility of apple and pear trees to alternate fruit‐bearing are associated with vascular anatomy.
  • We examined anatomical traits related to water transport and nutrient storage in young woody shoots and roots of 15 different scion/rootstock cultivars of apple and pear trees. In addition, soil and leaf water potentials were measured across a drought period.
  • We found a positive correlation between the mean vessel diameter of roots and the annual shoot length. Vigorously growing trees also maintained less negative midday leaf water potential during drought. Furthermore, we observed a close negative correlation between the proportions of total parenchyma in the shoots and the alternate bearing index.
  • Based on anatomical proxies, our results suggest that xylem transport efficiency of rootstocks is linked to growth vigour of both apple and pear trees, while limited carbohydrate storage capacity of scions may be associated with increased susceptibility to alternate bearing. These findings can be useful for the breeding of new cultivars of commercially important fruit trees.
  相似文献   

4.
Current understanding of physiological mechanisms governing stomatal behavior under water stress conditions is still incomplete and controversial. It has been proposed that coordination of stomatal kinetics with xylem vulnerability to cavitation [vulnerability curve (VC)] leads to different levels of isohydry/anisohydry in different plant species/cultivars. In this study, this hypothesis is tested in Vitis vinifera cultivars displaying contrasting stomatal behavior under drought stress. The cv Montepulciano (MP, near‐isohydric) and Sangiovese (SG, anisohydric) were compared in terms of stomatal response to leaf and stem water potential, as possibly correlated to different petiole hydraulic conductivity (kpetiole) and VC, as well as to leaf water relations parameters. MP leaves showed almost complete stomatal closure at higher leaf and stem water potentials than SG leaves. Moreover, MP petioles had higher maximum kpetiole and were more vulnerable to cavitation than SG. Water potential at the turgor loss point was higher in MP than in SG. In SG, the percentage reduction of stomatal conductance (PLgs) under water stress was almost linearly correlated with corresponding percentage loss of kpetiole (PLC), while in MP PLgs was less influenced by PLC. Our results suggest that V. vinifera near‐isohydric and anisohydric genotypes differ in terms of xylem vulnerability to cavitation as well as in terms of kpetiole, and that the coordination of these traits leads to their different stomatal responses under water stress conditions.  相似文献   

5.
Hydraulic failure can cause massive die-back of forest trees during drought. With extreme climatic events set to become more frequent and severe due to climatic change, it is essential to study resistance to water stress-induced cavitation. We investigated the genetic differentiation for cavitation resistance among Pinus hartwegii populations, the pine species growing at the treeline in México. Open-pollinated seeds were collected from seven natural populations along an altitudinal gradient (3,150–3,650 masl) from Pico de Tancítaro, Michoacán, western México. Seedlings were raised in a nursery and then established in a randomized complete block design in a common garden experiment. Resistance to cavitation (P 50, xylem pressure inducing 50 % loss of hydraulic conductance and S, slope of the vulnerability curve) and specific hydraulic conductivity (k s), were evaluated on branches of 5-year-old seedlings using the Cavitron technique. Mean P 50 was ?3.42 ± 0.05 MPa, indicating that Pinus hartwegii is one of the more vulnerable pine species to cavitation. No significant genetic differentiation was detected between populations for cavitation resistance traits (P 50 and S), but a significant altitudinal cline was found for S. In contrast, k s exhibited a significant differentiation among populations and a significant decline with increasing altitude. The lack of genetic differentiation among P. hartwegii populations for cavitation resistance is likely to represent a limitation for adapting to the warmer and drier climates that are expected to occur in México under climatic change. Finally, a worldwide comparison within the Pinus genus showed that pines growing at the treeline were on average more vulnerable to cavitation than those from lowland. This might reflect an adaptation to dry environmental conditions at low elevation.  相似文献   

6.
Whole-canopy measurements of water flux were used to calculate stomatal conductance (g s ) and transpiration (E) for seedlings of western water birch (Betula occidentalis Hook.) under various soil-plant hydraulic conductances (k), evaporative driving forces (ΔN; difference in leaf-to-air molar fraction of water vapor), and soil water potentials (Ψs). As expected, g s dropped in response to decreased k or ΨS, or increased ΔN(> 0.025). Field data showed a decrease in mid-day g s with decreasing k from soil-to-petiole, with sapling and adult plants having lower values of both parameters than juveniles. Stomatal closure prevented E and Ψ from inducing xylem cavitation except during extreme soil drought when cavitation occurred in the main stem and probably roots as well. Although all decreases in g s were associated with approximately constant bulk leaf water potential (ψl), this does not logically exclude a feedback response between ΨL and g s . To test the influence of leaf versus root water status on g s , we manipulated water status of the leaf independently of the root by using a pressure chamber enclosing the seedling root system; pressurizing the chamber alters cell turgor and volume only in the shoot cells outside the chamber. Stomatal closure in response to increased ΔN, decreased k, and decreased ΨS was fully or partially reversed within 5 min of pressurizing the soil. Bulk ΨL remained constant before and after soil pressurizing because of the increase in E associated with stomatal opening. When ΔN was low (i.e., < 0.025), pressurizing the soil either had no effect on g s , or caused it to decline; and bulk ΨL increased. Increased Ψl may have caused stomatal closure via increased backpressure on the stomatal apparatus from elevated epidermal turgor. The stomatal response to soil pressurizing indicated a central role of leaf cells in sensing water stress caused by high ΔN, low k, and low ΨS. Invoking a prominent role for feedforward signalling in short-term stomatal control may be premature.  相似文献   

7.
Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F1 cucumber cultivar (Cucumis sativus L.) was grafted onto Affyne (Cucumis sativus L.) and Shintoza A90 (Cucurbitamaxima × C. moschata) rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc), which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant?1 in non-grafted treatment to 6.149 kg plant?1 in grafted treatment under moderate -water stress, total soluble solid contents (13%), titratable acidity (39%) and vitamin C (33%). The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.  相似文献   

8.
The Olmos Formation (upper Campanian), with over 60 angiosperm leaf morphotypes, is Mexico''s richest Cretaceous flora. Paleoclimate leaf physiognomy estimates indicate that the Olmos paleoforest grew under wet and warm conditions, similar to those present in modern tropical rainforests. Leaf surface area, tree size and climate reconstructions suggest that this was a highly productive system. Efficient carbon fixation requires hydraulic efficiency to meet the evaporative demands of the photosynthetic surface, but it comes at the expense of increased risk of drought-induced cavitation. Here we tested the hypothesis that the Olmos paleoforest had high hydraulic efficiency, but was prone to cavitation. We characterized the hydraulic properties of the Olmos paleoforest using theoretical conductivity (Ks), vessel composition (S) and vessel fraction (F), and measured drought resistance using vessel implosion resistance and the water potential at which there is 50% loss of hydraulic conductivity (P50). We found that the Olmos paleoforest had high hydraulic efficiency, similar to that present in several extant tropical-wet or semi-deciduous forest communities. Remarkably, the fossil flora had the lowest , which, together with low median P50 (−1.9 MPa), indicate that the Olmos paleoforest species were extremely vulnerable to drought-induced cavitation. Our findings support paleoclimate inferences from leaf physiognomy and paleoclimatic models suggesting it represented a highly productive wet tropical rainforest. Our results also indicate that the Olmos Formation plants had a large range of water conduction strategies, but more restricted variation in cavitation resistance. These straightforward methods for measuring hydraulic properties, used herein for the first time, can provide useful information on the ecological strategies of paleofloras and on temporal shifts in ecological function of fossil forests chronosequences.  相似文献   

9.
Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. We examined how vulnerability to cavitation (P50) related to dry season leaf water potentials and stem and leaf traits. P50‐values ranged from ?0.8 to ?6.2 MPa, with pioneers on average 38% more vulnerable to cavitation than shade‐tolerants. Vulnerability to cavitation was related to structural traits conferring tissue stress vulnerability, being negatively correlated with wood density, and surprisingly maximum vessel length. Vulnerability to cavitation was negatively related to the Huber‐value and leaf dry matter content, and positively with leaf size. It was not related to SLA. We found a strong trade‐off between cavitation resistance and hydraulic efficiency. Most species in the field were operating at leaf water potentials well above their P50, but pioneers and deciduous species had smaller hydraulic safety margins than shade‐tolerants and evergreens. A trade‐off between hydraulic safety and efficiency underlies ecological differentiation across these tropical dry forest tree species.  相似文献   

10.
Although cultivation of genetic modified (GM) annual crops has been steadily increasing in the recent 10 years, the commercial cultivation of GM fruit tree is still very limited and reports of field trials on GM fruit trees are rare. This is probably because development and evaluation of GM fruit trees require a long period of time due to long life cycles of trees. In this study, we report results from a field trial on three rolB transgenic dwarfing apple rootstocks of M26 and M9 together with non-transgenic controls grafted with five non-transgenic scion cultivars. We intended to investigate the effects of transgenic rootstock on non-transgenic scion cultivars under natural conditions as well as to evaluate the potential value of using the rolB gene to modify difficult-to-root rootstocks of fruit trees. The results showed that all rolB transgenic rootstocks significantly reduced vegetative growth including tree height regardless of scion cultivar, compared with the non-transgenic rootstocks. Flowering and fruiting were also decreased for cultivars grown on the transgenic rootstocks in most cases, but the fruit quality was not clearly affected by the transgenic rootstocks. Cutting experiment and RT-PCR analysis showed that the rolB gene was stably expressed under field conditions. PCR and RT-PCR analyses displayed that the rolB gene or its mRNA were not detectable in the scion cultivars, indicating no translocation of the transgene or its mRNA from rootstock to scion. Our results suggest that rolB modified rootstocks should be used in combination with vigorous scion cultivars in order to obtain sufficient vegetative growth and good yield. Alternatively, the rolB gene could be used to dwarf vigorous rootstocks of fruit trees or produce bonzai plants as it can significantly reduce the vegetative growth of plants.  相似文献   

11.
An anatomical study of roots and stems of five self-rooted cherry rootstocks with different growth control potentials was performed to compare their structure and xylem anatomy. The aim was to correlate anatomical parameters with rootstock dwarfing potential and theoretical hydraulic conductance (k h), and to evaluate the potential application of anatomical characteristics in the preselection process for prediction of ultimate tree vigor. One of the mechanisms of water transport efficiency reduction in dwarfing rootstock stems is from the rootstock xylem anatomy. Anatomical parameters of ??Gisela 5?? and ??Mazzard?? were typical for dwarfing and vigorous rootstocks, respectively, and were thus suggested as reference rootstocks. Significantly greater vessel diameter and frequency were found in invigorating and dwarfing rootstocks, respectively. Higher k h was obtained in roots, compared to stems, due to significantly larger vascular elements. Dwarfing rootstocks had lower k h due to small vessel lumens and percentage and, to a lesser extent, because of low wood/cortex ratios or percentage of wood. A higher percentage of wood or xylem in cherry roots and stems was not always positively correlated with their conductivity and vigor. Thus, these parameters cannot be reliably used in prediction of the ultimate vigor, although this method was previously suggested for some other fruit tree species. The most reliable anatomical parameters for that purpose proved to be vessel frequency, vessel lumen area, and percentage of vessels on wood cross section. These characteristics could thus be an effective way to estimate dwarfing capacity and could be applied in rootstock selection and breeding programs.  相似文献   

12.
Quantity and quality of irrigation water are considered the most imperative limiting factors for plant production in arid environment. Adoptions of strategies can minimize crop water consumption while nonexistent yield reduction is considered challenge for scholars especially in arid environment. Grafting is regarded as a promising tool to avoid or reduce yield loss caused by abiotic stresses. Tomato (Solanum lycopersium Mill.), commercial cultivar Faridah was grafted on Unifort rootstock and grown under regulated deficit irrigation (RDI) (100%, 80% and 60% ETc), using two types of irrigation water, fresh (EC = 0.86 dS/m) and brackish (EC = 3.52 dS/m). The effects of grafting and RDI on water use efficiency, vegetative growth, yield, fruit quality were investigated. Plant vegetative growth was reduced under water and salinity stresses. Grafting the plant significantly improves the vegetative growth under both conditions. The results showed that crop yield, Ca+2 and K+ were considerably increased in grafted tomato compared to non-grafted plants under water and salinity stresses. Grafted tomato plants accumulated less Na+ and Cl, especially under high levels of salinity compared to non-grafted plants. Grafting tomato plants showed a slight decrease on the fruit quality traits such as vitamin C, titratable acidity (TA) and total soluble solids (TSS). This study confirmed that grafted tomato plants can mitigate undesirable impact of salt stress on growth and fruit quality.  相似文献   

13.
The relationship between water transport and photosynthesis represents the trade-off between carbon gain and water loss and was used to evaluate potential differences in water resource utilization among two dominant vegetation types of south Florida: subtropical evergreen broad leaf forests (hardwood hammocks) and pine woodlands (pine rocklands). We found consistent linear positive relationships between the quantum yield of photosystem II (ϕ PSII), an index of photosynthetic capacity, and hydraulic conductivity per sapwood area (k S) and per leaf area (k L) across all species. The slope of the ϕ PSIIk S relationship was steeper for hardwood hammock than for pine rockland species. Mean ϕ PSII was greater in pine rockland species and was greater for a given k L than in hardwood hammock species. These results are consistent with previous observations demonstrating that pine rocklands tend to have better access to stable water sources than hardwood hammocks. We also found greater photosynthetic carbon isotope discrimination with increasing k S and k L in pine rockland species, but not in hardwood hammock species, suggesting increased stomatal conductance with increasing k S and k L, consistent with greater water availability in pine rockland habitats. Our study thus utilizes relationships between water transport and photosynthesis to evaluate hydraulic constraints on physiological function between two contrasting vegetation types with contrasting stability of water sources.  相似文献   

14.
Water use and hydraulic architecture were studied in the coffee (Coffea arabica) cultivars San Ramon, Yellow Caturra and Typica growing in the field under similar environmental conditions. The cultivars differed in growth habit, crown architecture, basal sapwood area and total leaf surface area. Transpiration per unit leaf area (E), stomatal conductance (g s), crown conductance (g c), total hydraulic conductance of the soil/leaf pathway (G t) and the stomatal decoupling coefficient, omega (Ω) (Jarvis and McNaughton 1986) were assessed over a range of soil moisture and during partial defoliation treatments. The relationship between sap flow and sapwood area was linear and appeared to be similar for the three cultivars. Variation in g c, E, and G t of intact plants and leaf area-specific hydraulic conductivity (k l) of excised lateral branches was negatively correlated with variation in the ratio of leaf area to sapwood area. Transpiration, g c, and g s were positively correlated with G t. Transpiration and G t varied with total leaf area and were greatest at intermediate values (10 m2) of leaf area. Omega was greatest in Yellow Caturra, the cultivar with the greatest leaf area and a dense crown, and was smallest in Typica, the cultivar with an open crown. Differences in omega were attributable primarily to differences in leaf boundary layer conductance among the cultivars. Plants of each cultivar that were 40% defoliated maintained sap flows comparable to pretreatment plants, but expected compensatory increases in g s were not consistently observed. Despite their contrasting crown morphologies and hydraulic architecture, the three cultivars shared common relationships between water use and hydraulic architectural traits. Received: 17 February 1999 / Accepted: 28 July 1999  相似文献   

15.
It is well known that rootstocks can have an effect on the vegetative growth and development of the tree; however, there has been no clear explanation about the physiological mechanism involved in this phenomenon. Evidence indicates that the rootstock effects on tree vegetative growth may be related to hydraulic limitations of the rootstock. The objective of these experiments was to investigate the shoot growth, water potential, and gas exchange of peach trees on different rootstocks in response to manipulations of water relations of trees on rootstocks that differ in root hydraulic conductance. Tree water relations were manipulated by applying different amounts of pneumatic pressure on the root system and then relative shoot extension growth rate, tree transpiration rate, leaf water potential, leaf conductance, leaf transpiration, and net CO(2) exchange rate responses were measured. Root pressurization increased leaf water potential, relative shoot extension growth rate, leaf conductance, leaf transpiration, and net CO(2) exchange rates of trees on both vigorous and dwarfing rootstocks. There was a significant positive linear correlation between applied pneumatic pressure and tree transpiration rate and leaf water potential. Leaf conductance, transpiration rate, and net CO(2) exchange rate as well as relative shoot extension growth rates were also positively correlated with the applied pneumatic pressure on the root system. These relationships were consistent across both vigorous and size-controlling rootstocks, indicating that rootstock hydraulic limitation may be directly involved in the vegetative growth control of peach trees.  相似文献   

16.

Background and Aims

It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments.

Methods

A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits.

Key Results

The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth.

Conclusions

The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions.  相似文献   

17.

Background and Aims

The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems.

Methods

A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations.

Key Results

It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am.

Conclusions

The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.Key words: Tropical dry forest, karst, leaf habit, hydraulic conductivity, cavitation resistance, leaf water-stress tolerance, wood density, leaf density, phylogenetic independent contrasts  相似文献   

18.
Lianas are an important component of Neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P 50) and maximum hydraulic conductivity (K h), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forests.  相似文献   

19.
The maximum vegetative growth potential of two peach [Prunuspersica (L.) Batsch] cultivars that differ in the timing ofresource demand for reproductive growth was determined in termsof stem extension, stem and leaf dry weight accumulation, andtrunk radial increment on defruited trees. The maximum vegetativegrowth potentials were similar on the two cultivars indicatingthat the greater partitioning of dry weight to vegetative growthfrequently observed on early maturing cultivars compared tolate maturing cultivars is the result of a shorter period ofcompetition between reproductive and vegetative growth, ratherthan a genetic difference in vegetative growth potential. Onboth cultivars, stem extension and leaf dry weight accumulationceased in mid-summer, however stem dry weight accumulation andtrunk radial increment increase continued through the autumn. The presence of fruit did not have a detectable effect on thefinal stem length, stem dry weight or leaf dry weight on theearly maturing cultivar, but it reduced final stem length anddry weight by 43 and 56%, respectively on the late maturingcultivar. The presence of fruit did decrease stem length, stemdry weight and leaf dry weight on the early maturing cultivarfor 1 month prior to and 1 month after fruit harvest. Fruitdecreased final trunk radial increment by 42 and 77% on theearly and late maturing cultivars, respectively. These reductionsin vegetative growth indicate that resource partitioning tovegetative growth was reduced by competition with fruit growth. Comparison of stem relative extension rates and stem and leafrelative growth rates on fruited and defruited trees indicatedthat vegetative growth was resource-limited shortly after vegetativebud break on fruited trees of both cultivars. This period ofresource-limited vegetative growth corresponded to a periodof resource-limited fruit growth identified in an earlier study.During the period of resource-limited vegetative growth, assimilatesupply was low due to low leaf area index, and carbohydratedemand was relatively high due to high vegetative and reproductivegrowth potentials, creating resource-limited growth conditions.Copyright1995, 1999 Academic Press Maximum vegetative growth potential, carbon economy, partitioning, resource availability, resource limitation, source-limited growth, growth analysis, relative growth rate, peach, Prunus persica (L.) Batsch  相似文献   

20.
Xylem vulnerability to cavitation and hydraulic efficiency are directly linked to fine‐scale bordered pit features in water‐conducting cells of vascular plants. However, it is unclear how pit characteristics influence water transport and carbon economy in tropical species. The primary aim of this study was to evaluate functional implications of changes in pit characteristics for water relations and photosynthetic traits in tropical Ficus species with different growth forms (i.e. hemiepiphytic and non‐hemiepiphytic) grown under common conditions. Intervessel pit characteristics were measured using scanning electron microscopy in five hemiepiphytic and five non‐hemiepiphytic Ficus species to determine whether these traits were related to hydraulics, leaf photosynthesis, stomatal conductance and wood density. Ficus species varied greatly in intervessel pit structure, hydraulic conductivity and leaf physiology, and clear differences were observed between the two growth forms. The area and diameter of pit aperture were negatively correlated with sapwood‐specific hydraulic conductivity, mass‐based net assimilation rate, stomatal conductance (gs), intercellular CO2 concentration (Ci) and the petiole vessel lumen diameters (Dv), but positively correlated with wood density. Pit morphology was only negatively correlated with sapwood‐ and leaf‐specific hydraulic conductivity and Dv. Pit density was positively correlated with gs, Ci and Dv, but negatively with intrinsic leaf water‐use efficiency. Pit and pit aperture shape were not significantly correlated with any of the physiological traits. These findings indicate a significant role of pit characteristics in xylem water transport, carbon assimilation and ecophysiological adaptation of Ficus species in tropical rain forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号