首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Indoleamine 2,3-dioxygenase (IDO) reacts with either oxygen or superoxide and tryptophan (trp) or other indoleamines while tryptophan 2,3-dioxygenase (TDO) reacts with oxygen and is specific for trp. These enzymes catalyze the rate-limiting step in the kynurenine (KYN) pathway from trp to quinolinic acid (QA) with TDO in kidney and liver and IDO in many tissues, including brain where it is low but inducible. QA, which does not cross the blood-brain barrier, is an excitotoxin found in the CNS during various pathologies and is associated with convulsions. We proposed that HBO-induced convulsions result from increased flux through the KYN pathway via oxygen stimulation of IDO. To test this, TDO and IDO of liver and brain, respectively, of Sprague Dawley rats were assayed with oxygen from 0 to 6.2 atm HBO. TDO activity was appreciable at even 30 microM oxygen and rose steeply to a maximum at 40 microM. Conversely, IDO had almost no detectable activity at or below 100 microM oxygen and maximum activity was not reached until about 1150 microM. (Plasma contains about 215 microM oxygen and capillaries about 20 microM oxygen when rats breathe air.) KYN was 60% higher in brains of HBO-convulsed rats compared to rats breathing air. While the oxygen concentration inside cells of rats breathing air or HBO is not known precisely, it is clear that the rate-limiting, IDO-catalyzed step in the brain KYN pathway (but not liver TDO) can be greatly accelerated in rats breathing HBO.  相似文献   

3.
Indoleamine 2,3-dioxygenase (IDO) is a heme dioxygenase which has been shown to be involved in the pathological immune escape of diseases such as cancer. The synthesis and structure-activity relationships (SAR) of a novel series of IDO inhibitors based on the indol-2-yl ethanone scaffold is described. In vitro and in vivo biological activities have been evaluated, leading to compounds with IC(50) values in the micromolar range in both tests. Introduction of small substituents in the 5- and 6-positions of the indole ring, indole N-methylation and variations of the aromatic side chain are all well tolerated. An iron coordinating group on the linker is a prerequisite for biological activity, thus corroborating the virtual screening results.  相似文献   

4.
5.
The heme enzyme indoleamine 2,3-dioxygenase (IDO) oxidizes the pyrrole moiety of L-tryptophan (Trp) and other indoleamines and represents the initial and rate-limiting enzyme of the kynurenine (Kyn) pathway. IDO is a unique enzyme in that it can utilize superoxide anion radical (O2*- ) as both a substrate and a co-factor. The latter role is due to the ability of O2*- to reduce inactive ferric-IDO to the active ferrous form. Nitrogen monoxide (*NO) and H2O2 inhibit the dioxygenase and various inter-relationships between the nitric oxide synthase- and IDO-initiated amino acid degradative pathways exist. Induction of IDO and metabolism of Trp along the Kyn pathway is implicated in a variety of physiological and pathophysiological processes, including anti-microbial and anti-tumor defense, neuropathology, immunoregulation and antioxidant activity. Antioxidant activity may arise from O2*- scavenging by IDO and formation of the potent radical scavengers and Kyn pathway metabolites, 3-hydroxyanthranilic acid and 3-hydroxykynurenine. Under certain conditions, these aminophenols and other Kyn pathway metabolites may exhibit pro-oxidant activities. This article reviews findings indicating that redox reactions are involved in the regulation of IDO and Trp metabolism along the Kyn pathway and also participate in the biological activities exhibited by Kyn pathway metabolites.  相似文献   

6.
Hwang SL  Chung NP  Chan JK  Lin CL 《Cell research》2005,15(3):167-175
Indoleamine 2, 3-dioxygenase (IDO) is a rate-limiting enzyme for the tryptophan catabolism. In human and murine cells, IDO inhibits antigen-specific T cell proliferation in vitro and suppresses T cell responses to fetal alloantigens during murine pregnancy. In mice, IDO expression is an inducible feature of specific subsets of dendritic cells (DCs),and is important for T cell regulatory properties. However, the effect of IDO and tryptophan deprivation on DC functions remains unknown. We report here that when tryptophan utilization was prevented by a pharmacological inhibitor of IDO, 1-methyl tryptophan (1MT), DC activation induced by pathogenic stimulus lipopolysaccharide (LPS) or inflammatory cytokine TNF-α was inhibited both phenotypically and functionally. Such an effect was less remarkable when DC was stimulated by a physiological stimulus, CD40 ligand. Tryptophan deprivation during DC activation also regulated the expression of CCR5 and CXCR4, as well as DC responsiveness to chemokines. These results suggest that tryptophan usage in the microenvironment is essential for DC maturation, and may also play a role in the regulation of DC migratory behaviors.  相似文献   

7.
8.
9.
10.
The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.  相似文献   

11.

Background

Old age is associated with increased levels of circulating pro-inflammatory cytokines, a phenomenon termed inflamm-aging. Elevated levels of pro-inflammatory cytokines have been associated with several age-associated diseases and with a shortened lifespan. Indoleamine 2,3-dioxygenase (IDO) has immunomodulatory properties and its activity is elevated in inflammation, autoimmune disorders and malignancies. We have previously shown that IDO activity is increased in nonagenarians compared to young individuals and that high IDO activity is associated with mortality at old age.

Findings

In this study our aim was to assess whether this difference in IDO activity in the plasma was due to the differential expression of either the IDO1 or IDO2 gene in peripheral blood mononuclear cells. Our results show that IDO1 and IDO2 are not differently expressed in nonagenarians compared to controls and that the expression of IDO genes is not associated with the level of IDO activity in the plasma.

Conclusion

The level of IDO activity in the plasma is not regulated through the expression of IDO1 or IDO2 in the peripheral blood mononuclear cells.  相似文献   

12.
13.
Indoleamine 2,3-dioxygenase (IDO) plays a significant role in several disorders such as Alzheimer’s disease, age-related cataracts and tumors. A series of novel tryptoline derivatives were synthesized and evaluated for their inhibitory activity against IDO. Substituted tryptoline derivatives (11a, 11c, 11e, 12b and 12c) were demonstrated to be more potent than known inhibitor MTH-Trp. Suzuki–Miyaura cross-coupling reaction of 11ad with phenylboronic acid proceeded in high yields. In most cases, C5 and C6 substitutions on the corresponding indole ring were well tolerated. The tryptoline derivative 11c is a promising chemical lead for the discovery of novel IDO inhibitors.  相似文献   

14.
Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells and myeloid-derived suppressor cells, and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-β signaling. Small-molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in gastrointestinal stromal tumors has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer.  相似文献   

15.
The activity and expression of indoleamine 2,3-dioxygenase together with L-tryptophan transport has been examined in cultured human breast cancer cells. MDA-MB-231 but not MCF-7 cells expressed mRNA for indoleamine 2,3-dioxygenase. Kynurenine production by MDA-MB-231 cells, which was taken as a measure of enzyme activity, was markedly stimulated by interferon-gamma (1000 units/ml). Accordingly, L-tryptophan utilization by MDA-MB-231 cells was enhanced by interferon-gamma. 1-Methyl-DL-tryptophan (1 mM) inhibited interferon-gamma induced kynurenine production by MBA-MB-231 cells. Kynurenine production by MCF-7 cells remained at basal levels when cultured in the presence of interferon-gamma. L-Tryptophan transport into MDA-MB-231 cells was via a Na(+)-independent, BCH-sensitive pathway. It appears that system L (LAT1/CD98) may be the only pathway for l-tryptophan transport into these cells. 1-Methyl-D,L-tryptophan trans-stimulated l-tryptophan efflux from MDA-MB-231 cells and thus appears to be a transported substrate of system L. The results suggest that system L plays an important role in providing indoleamine-2,3-dioxygenase with its main substrate, L-tryptophan, and suggest a mechanism by which estrogen receptor-negative breast cancer cells may evade the attention of the immune system.  相似文献   

16.
17.
18.
19.
Tryptophan is an essential amino acid involved in the protein synthesis, cognition, and immunity. Oxidative catabolism of tryptophan is executed by the sets of biochemical reactions collectively referred to as the kynurenine pathway. In the immune system, two distinct enzymes, Indoleamne 2,3 dioxygenase 1 (IDO1) and Indoleamine 2, 3 dioxygenase 2 (IDO2) can initiate metabolic flux through the kynurenine pathway. Rheumatoid arthritis is an autoimmune disease driven by the exacerbated immune response towards self antigens and characterized by the chronic inflammatory reaction of the diarthrodial joints. Collagen induced arthritis (CIA) is an animal model of rheumatoid arthritis. Using CIA in wild type (WT) and mice deficient with Indoleamine 2,3 dioxygenase (Ido1KO), it was of interest to test the impact of Ido1 deletion on the concentration of tryptophan and its catabolites as well as on mRNA expression for other genes on the kynurenine pathway. Here, when compared with samples taken from naïve WT animals and those with CIA, it was found that only in the inguinal lymph nodes (iLN) taken from Ido1KO mice with CIA tryptophan concentration was significantly increased. In contrast, mRNA expression for Ido2 was decreased in naïve as well as in the diseased iLN taken from Ido1KO mice. Deletion of Ido1 and reduced mRNA expression for Ido2 neither affected the concentration of the downstream metabolites of tryptophan nor mRNA expression for downstream genes on the kynurenine pathway in iLN. Moreover, the concentration of kynurenine in sera of mice with CIA was significantly decreased in Ido1KO mice with arthritis.  相似文献   

20.
Initially recognized in infection because of antimicrobial activity (‘tryptophan starvation’), indoleamine 2,3-dioxygenase (IDO) is widely involved in host immune homeostasis and even immune evasion by microbes that establish commensalism or chronic infection. This review deals with recent findings that could gain IDO a reputation of Jack-of-all-trades in mammalian host/microbe interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号