首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Automated carboxy-terminal sequence analysis of peptides.   总被引:1,自引:1,他引:0       下载免费PDF全文
Proteins and peptides can be sequenced from the carboxy-terminus with isothiocyanate reagents to produce amino acid thiohydantoin derivatives. Previous studies in our laboratory have focused on solution phase conditions for formation of the peptidylthiohydantoins with trimethylsilylisothiocyanate (TMS-ITC) and for hydrolysis of these peptidylthiohydantoins into an amino acid thiohydantoin derivative and a new shortened peptide capable of continued degradation (Bailey, J. M. & Shively, J. E., 1990, Biochemistry 29, 3145-3156). The current study is a continuation of this work and describes the construction of an instrument for automated C-terminal sequencing, the application of the thiocyanate chemistry to peptides covalently coupled to a novel polyethylene solid support (Shenoy, N. R., Bailey, J. M., & Shively, J. E., 1992, Protein Sci. I, 58-67), the use of sodium trimethylsilanolate as a novel reagent for the specific cleavage of the derivatized C-terminal amino acid, and the development of methodology to sequence through the difficult amino acid, aspartate. Automated programs are described for the C-terminal sequencing of peptides covalently attached to carboxylic acid-modified polyethylene. The chemistry involves activation with acetic anhydride, derivatization with TMS-ITC, and cleavage of the derivatized C-terminal amino acid with sodium trimethylsilanolate. The thiohydantoin amino acid is identified by on-line high performance liquid chromatography using a Phenomenex Ultracarb 5 ODS(30) column and a triethylamine/phosphoric acid buffer system containing pentanesulfonic acid. The generality of our automated C-terminal sequencing methodology was examined by sequencing model peptides containing all 20 of the common amino acids. All of the amino acids were found to sequence in high yield (90% or greater) except for asparagine and aspartate, which could be only partially removed, and proline, which was found not be capable of derivatization. In spite of these current limitations, the methodology should be a valuable new tool for the C-terminal sequence analysis of peptides.  相似文献   

2.
Chromatographic peptide mapping of lysyl endopeptidase digests of penicillin-binding protein 3 (PBP 3) of Escherichia coli revealed peptides that differed in retention time between the precursor and mature forms. The peptides were purified from a processing-defective (prc) mutant and a wild-type (prc+) strain. These peptides were identified as the C-terminal region of the precursor form and mature PBP 3 by amino acid sequencing. Each of the C-terminal peptides was cleaved into two fragments by trypsin digestion. By sequencing the resultant carboxyl-side fragment derived from the mature form, it was concluded that the C-terminal residue of mature PBP 3 was Val-577, and thus the Val-577-Ile-578 bond is the cleavage site for processing. This conclusion was consistent with the amino acid compositions of the relevant peptides, which suggested that the peptide from the cleavage site to the end of the deduced sequence (Ile-578-Ser-588) was present in the precursor but absent in the mature form. One lysyl peptide bond resisted both lysyl endopeptidase and trypsin and remained uncleaved in the peptide analyzed above.  相似文献   

3.
The nonenzymatic digestion of proteins by microwave D-cleavage is an effective technique for site-specific cleavage at aspartic acid (D). This specific cleavage C-terminal to D residues leads to inherently large peptides (15-25 amino acids) that are usually relatively highly charged (above +3) when ionized by electrospray ionization (ESI) due to the presence of several basic amino acids within their sequences. It is well-documented that highly charged peptide ions generated by ESI are well-suited for electron transfer dissociation (ETD), which produces c- and z-type fragment ions via gas-phase ion/ion reactions. In this paper, we describe the sequence analysis by ETD tandem mass spectrometry (MS/MS) of multiply charged peptides generated by microwave D-cleavage of several standard proteins. Results from ETD measurements are directly compared to CID MS/MS of the same multiply charged precursor ions. Our results demonstrate that the nonenzymatic microwave D-cleavage technique is a rapid (<6 min) and specific alternative to enzymatic cleavage with Lys-C or Asp-N to produce highly charged peptides that are amenable to informative ETD.  相似文献   

4.
The amino acid sequence of the C-terminal domain of the elongation factor G (EF-G) has been studied. The polypeptide chain of the domain consists of 228 amino acid residues, and contains no tryptophan or cysteine residues. To determine its structure, the peptides obtained as a result of the fragment digestion by staphylococcal glutamic protease, cyanogen bromide cleavage, and tryptic hydrolysis of the fragment modified by maleic anhydride have been analyzed, as well as peptides obtained after hydrolyses of cyanogen bromide fragments with chymotrypsin, thermolysin and trypsin.  相似文献   

5.
Arginine kinase was aminoethylated in order to block the five free thiol groups on the native enzyme, and then submitted to BrCN cleavage. The BrCN resulting peptides were soluble in propionic acid (10 percent) and subsequently submitted to gel-filtration. The large polypeptide subfractions were citraconylated and resubmitted to differnt gelchromatographies, whereas the short peptide subfractions were submitted to preparative paper electrochromatographies. Eight peptides of 2, 11, 17, 25, 61, 82, 86 and 132 amino acid residues were isolated, one of which is the overlapping of two peptides. The amino acid composition and the end group of all the isolated peptides were established. The short peptides (2, 11 and 17 residues) were sequenced. All peptides possess homoserine at C-terminal position because one methionyl residue is situated at the C-terminal position in the native protein. The polypeptide with 132 residues possessed N-acetylated residue at N-terminal position: therefore this polypeptide is located at the N-terminal position in the protein. The sum and account of each amino acid of the seven isolated peptides were compared to those of the intact protein: the sum of the seven peptides is 331 amino acid residues, whereas the whole protein contains 342 residues. The molecular weight of arginine kinase is revised and calculated on the basis of the present results (37, 687).  相似文献   

6.
The primary structure of the L-chain of an IgA1-immunoglobulin (Myeloma protein Tro) has been determined by means of cleavage with trypsin and, if necessary, with alpha-chymotrypsin. The tryptic peptides of the variable part were characterized by amino acid analysis, Dansyl-Edman degradation and cleavage with carboxypeptidase; the peptides of the constant part were identified by amino acid analyses and determination of its N- and C-terminal residues. The sequence of the remaining amino acids and the arrangement of the peptides were established in homology to known structures. The protein comprises 216 amino acids. The homology of the variable part clearly characterizes it as belonging to subgroup II of lambda-chains. In positions 27a, b and c, there are the subgroup-specific additional residues and in position 96 is the characteristic deletion. The constant part of the chain is Kern- and Oz- which indicates that it has serine in position 154 and arginine in position 191.  相似文献   

7.
8.
Two peptides, representing about 60% of the total molecule, have been isolated from a cyanogen bromide cleavage of the non-histone chromosomal protein HMG1. The amino acid analyses of these two peptides suggest that lysine residues are fairly evenly distributed within the molecule, whereas the aspartic and glutamic residues are irregularly distributed. One of the peptides represents the C-terminal portion of the molecule and contains a very high proportion of aspartic and glutamic residues. Unlike total HMG1, this peptide does not bind to DNA.  相似文献   

9.
The primary structure of the C-terminal region (94 residues) of the ADP,ATP carrier of beef heart mitochondria is described. CNBr cleavage results in a large peptide (CB1) with Mr 22 000 and several small peptides (CB2 to CB8). Peptide separation was achieved by gel chromatography with 80% formic acid or with an ethanol/formic acid mixture. The amino acid sequence of the small CNBr peptides was determined by solid-phase techniques. Hydrolysis in formic acid cleaves the carrier protein into an Mr 23 000 fragment (A1) with the blocked N-terminus and an Mr 10 000 fragment (A2) starting with proline. The alignment of two CNBr fragments was possible by degradation of A2 by solid-phase methods for 34 steps. The remaining CNBr fragments were arranged by sequencing the tryptic peptides of citraconylated A2.  相似文献   

10.
A method is proposed for localization of the sites of affinity labelling of the beta subunit of Escherichia coli RNA polymerase. The principle of this method is similar to that of the methods of rapid sequencing of nucleic acids. The polypeptide bearing a radioactive affinity label at one of the amino acid residues is subjected to short-term treatment with cyanogen bromide. The conditions of this reaction are selected in such a way that less than one cleavage occurs on average per polypeptide chain. Two series of radioactive peptides are formed, one involving all the possible N-terminal peptides and the other the C-terminal peptides. The distribution of the lengths of these peptides is studied by means of gel electrophoresis and compared with the theoretical ones based on the known amino acid sequence of the beta subunit. Obviously, the affinity label resides between the C-terminus of the shortest N-terminal radioactive peptide and the N-terminus of the shortest C-terminal radioactive peptide. In order to increase reliability and resolution of the method, partial trypsinolysis may be employed. The evidence obtained suggests that lysine residues over the regions 1036-1066, 1234-1242, and histidine-1237 are situated in the nearest neighbourhood to, or directly involved in the formation of the active center of initiating substrate binding of the beta subunit of E. coli RNA polymerase.  相似文献   

11.
Lakshmi Devi 《FEBS letters》1991,280(2):189-194
Many regulatory peptide precursors undergo post-translational processing at mono- and/or dibasic residues. Comparison of amino acids around the monobasic cleavage sites suggests that these cleavages follow certain sequence motifs and can be described as the rules that govern monobasic cleavages: (i) a basic amino acid it present at either 3, 5, or 7 amino acids N-terminal to the cleavage site, (ii) hydrophobic aliphatic amino acids (leucine, isoleucine, valine, or methionine) are never present in the position C-terminal to the monobasic amino acid at the cleavage site, (iii) a cysteine is never present in the vicinity of the cleavage site, and (iv) an aromatic amino acid is never present at the position N-terminal to the monobasic amino acid at the cleavage site. In addition to these rules, the monobasic cleavages follow certain tendencies: (i) the amino acid at the cleavage site tends to be predominantly arginine, (ii) the amino acid at the position C-terminal to the cleavage site tends to be serine, alanine or glycine in more than 60% of the cases, (iii) the amino acid at either 3, 5, or 7 position N-terminal to the cleavage site tends to be arginine, (iv) aromatic amino acids are rare at the position C-terminal to the monobasic amino acid at the cleavage site, and (v) aliphatic amino acids tend to be in the two positions N-terminal to and the two positions C-terminal to the cleavage site, except as noted above. When compared with a large number of sequence containing single basic amino acids, these rules and tendencies are capable of not only correctly predicting the processing sites, but also are capable of excluding most of the single basic sequences that are known to be uncleaved. Many or these rules can also be applied to correctly predict the dibasic and multibasic cleavage sites suggesting that the rules and tendencies could govern endoproteolytic processing at the monobasic, dibasic and multibasic sites.  相似文献   

12.
长叶车前花叶病毒上海分离株(HRVsh)的外壳蛋白中含有4个甲硫氨酸残基,本文采用溴化氰裂解,并结合葡聚糖凝胶G-100柱层析、高压纸电泳及纸层析等方法,分离纯化了5个多肽片段,经~(125)I标记抗体对免疫多肽的鉴定,表明其中二段多肽与~(125)-IgG的结合能力接近完整病毒的水平,说明这二段多肽具有HRVsh的抗原专一性,决定HRVsh抗原性的抗原决定簇主要分布于这二个肽段中。 外壳蛋白的胰蛋白酶酶解肽谱及多肽氨基酸序列分析的结果,表明HRVsh和HRV标准株系间在氨基酸序列上有很大相似性,这就决定了两者密切的血清学亲缘关系。  相似文献   

13.
The C-terminal region of the fibrinogen gamma chain is known to participate in several functional interactions including fibrin polymerization. This part of the molecule is retained on the gamma chain of fragment D (FgD) when fibrinogen is digested by plasmin in the presence of calcium to produce the fragment D-fragment E (FgD X FgE) complex but is lost if FgD is prepared in the absence of calcium. In an attempt to characterize the C-terminal polymerization domain we have used three techniques to examine this further degradation of FgD following the addition of EDTA and plasmin. Analysis of the digestion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a progressive cleavage of the gamma chain to two small remnants. The polymerization-inhibitory activity of the whole digest was studied using acid-solubilized fibrin. A progressive loss of inhibitory activity was associated with gamma chain shortening, reaching greater than a 120-fold reduction at the end of digestion. The cleavage of peptides was followed by reverse-phase high performance liquid chromatography and the release of a characteristic peptide triplet was associated with gamma chain cleavage. Manual sequencing, amino acid analysis, and fast atom bombardment mass spectrometry established the three peptides as gamma 303-356, 357-373, and 374-405. These peptides have sequences in common with those peptides recently reported by other investigators to be potent polymerization inhibitors. However, when a mixture of the three peptides was added in a 200-fold molar excess to polymerizing fibrin, no inhibitory activity could be demonstrated. It is concluded that the C-terminal polymerization domain of fibrinogen may be an extended region which includes the sequence gamma 303-405, when this is contiguous with the remainder of the gamma chain.  相似文献   

14.
Treatment of peptides with excess HgO in the presence of alkaline cyanide leads to cleavage of the peptides at glycine residues. The reaction appears to involve both C- and N-mercuration with subsequent release of 2 mol mercury per mol of glycine. An intermediate glyoxylic acid residue in Schiff base linkage is postulated. Treatment of the heptapeptide Phe-Ala-Lys-Gly-Leu-Asp-Val with alkaline HgO and KCN for 6 h at 25 degrees resulted in greater than 90% cleavage, and the resultant reaction products were separated by reverse phase chromatography and identified by amino acid analysis. N-terminal products were approximately equimolar Phe-Ala-Lys, Phe-Ala-Lys-Gly, and Phe-Ala-Lys-amide. C-terminal products were predominantly Leu-Asp-Val (63%), plus Gly-Leu-Asp-Val (9%), and oxalyl-Leu-Asp-Val (8%). This method may be useful for cleavage of peptides or proteins containing glycine residues.  相似文献   

15.
Pitrilysin from Escherichia coli was overproduced, purified, and analyzed for enzymatic activity using 14 peptides as a substrate. Pitrilysin cleaved all the peptides, except for two of the smallest, at a limited number of sites, but showed little amino acid specificity. It cleaved beta-endorphin (beta-EP) most effectively, with a K(m) value of 0.36 microM and a k(cat) value of 750 min(-1). beta-EP consists of 31 residues and was predominantly cleaved by the enzyme at Lys(19)-Asn(20). Kinetic analyses using a series of beta-EP derivatives with N and/or C-terminal truncations and with amino acid substitutions revealed that three hydrophobic residues (Leu(14), Val(15), and Leu(17)) and the region 22-26 in beta-EP are responsible for high-affinity recognition by the enzyme. These two regions are located on the N- and C-terminal sides of the cleavage site in beta-EP, suggesting that the substrate binding pocket of pitrilysin spans its catalytic site.  相似文献   

16.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides.  相似文献   

17.
Studies on the southern bean mosaic virus coat protein have established the molecular weight of this protein, its amino acid composition, the nature of its C-terminal amino acid, and the blockage of the N-terminal residue by an acetyl group. After hydrolysis of the protein by trypsin, the hydrolysate was fractionated by ion-exchange chromatography. Among the purified tryptic peptides were isolated the N- and the C-terminal peptides where sequences were determined, principally by mass spectrometry.  相似文献   

18.
An organic solvent soluble polypeptide has been isolated from photoreceptor complexes and chromatophores of Rhodospirillum rubrum. After extraction of the protein from lyophilized samples with 1:1 chloroform-methanol, it was purified by column chromatography. Its isoelectric point determined by isoelectric focusing was 7.10. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified polypeptide ran as a single band of an apparent molecular weight of 12 000. However, according to amino acid analysis, the minimal molecular weight based on one histidine residue per polypeptide is 19 000. The polypeptide contains no cysteine and no tyrosine. Amino acid analysis indicated that three methionines were present per histidine residue and cyanogen bromide cleavage gave four smaller peptides which were isolated by two-dimensional electrophoresis and chromatography. Spectroscopic analysis indicated the presence of three tryptophan residues per histidine and N-bromosuccinamide cleavage also gave four smaller peptides which could be isolated by two-dimensional electrophoresis and chromatography. The C-terminal amino acid was shown to be glycine by two methods, while the N-terminal amino acid appears to be blocked. The organic solvent soluble polypeptide accounts for approximately 50% of the chromatophore protein and seems to bind the antenna bacteriochlorophyll and carotenoid molecules. Using this procedure, organic solvent soluble polypeptides were isolated from several photosynthetic bacteria and were found to have substantially different amino acid contents.  相似文献   

19.
Tamm-Horsfall protein (THP), also known as uromodulin, is a major glycoprotein synthesized in the kidney. THP is expressed on the luminal surface of the membrane with the glycosyl phosphatidylinositol (GPI) anchor and excreted in urine at a rate of 50-100 mg per day. Although THP is the most abundant urinary protein, the function of THP remains unclear. In addition, little is known about the mechanism by which large amounts of THP are actively released into the urinary fluid. In this study, we examined the C-terminal structure of highly purified THP derived from human urine. Carboxypeptidase Y efficiently degraded urinary THP, indicating that the C-terminal structure of the protein contains an amino acid residue with a free carboxyl moiety. These results are consistent with our previous finding that urinary THP does not bind anti-CRD antibody. We obtained peptides from the complete digestion of urinary THP with lysylendopeptidase. We purified the most C-terminal peptide with p-phenylene diisothiocyanate-controlled pore glass (DITC-CPG) beads. N-terminal sequence analysis indicated the peptide begins with Tyr 520 and ends between E539 and E576. Direct C-terminal amino acid sequencing of highly purified urinary THP gave a sequence of -X-(Q)-G-(R)-F, corresponding to amino acids 544-548, -S-Q-G-R-F. We therefore conclude that urinary THP is generated by a proteolytic cleavage between F548 and S549, 66 amino acids upstream of a possible GPI-anchor attachment site. Because the sequence of THP, including the cleavage site, is highly homologous to that of GP2, a GPI-anchored protein within the pancreas, and both THP and GP2 are abundantly found as soluble forms in the excreted fluids, a common mechanism may exist governing the proteolytic release of GPI-anchored membrane proteins.  相似文献   

20.
Analysis of the Sendai virus M gene and protein.   总被引:12,自引:4,他引:8       下载免费PDF全文
The nucleotide sequence of the Sendai virus M (matrix or membrane) gene region was determined from cloned genomic DNA, and the limits of the M mRNA were determined by S1 nuclease mapping. The M mRNA is 1,173 nucleotides long and contains a single long open reading frame coding for a protein of 348 amino acids. The amino acid sequences of the N- and C-terminal peptides of the M protein were obtained by mass spectrometric analysis and correspond to those predicted from the open reading frame, with the N terminus modified in vivo by cleavage of the initiating methionine and acetylation of the following amino acid. The amphiphilic nature of the M protein structure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号