首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lateral segregation of cholesterol- and sphingomyelin-rich rafts and glycerophospholipid-containing non-raft microdomains has been proposed to play a role in a variety of biological processes. The most compelling evidence for membrane segregation is based on the observation that extraction with non-ionic detergents leads to solubilization of a subset of membrane components only. However, one decade later, a large body of inconsistent detergent-extraction data is threatening the very concept of membrane segregation. We have assessed the validity of the existing paradigms and we show the following. (i) The localization of a membrane component within a particular fraction of a sucrose gradient cannot be taken as a yardstick for its solubility: a variable localization of the DRMs (detergent-resistant membranes) in sucrose gradients is the result of complex associations between the membrane skeleton and the lipid bilayer. (ii) DRMs of variable composition can be generated by using a single detergent, the increasing concentration of which gradually extracts one protein/lipid after another. Therefore any extraction pattern obtained by a single concentration experiment is bound to be 'investigator-specific'. It follows that comparison of DRMs obtained by different detergents in a single concentration experiment is prone to misinterpretations. (iii) Depletion of cholesterol has a graded effect on membrane solubility. (iv) Differences in detergent solubility of the members of the annexin protein family arise from their association with chemically different membrane compartments; however, these cannot be attributed to the 'brick-like' raft-building blocks of fixed size and chemical composition. Our findings demonstrate a need for critical re-evaluation of the accumulated detergent-extraction data.  相似文献   

2.
As a first step toward the establishment of practical guidelines for the search for crystallization conditions, stability and solubility were examined for integral membrane proteins from photosynthetic bacteria in the presence of different detergents. The results obtained from their stability provided practical information on the proper choice of detergent type in the preparation process and the subsequent crystallization experiment. In addition, the determination of a solubility diagram provided a practical method for quantifying the correct choice of detergent concentration and for setting up the suitable precipitant concentration in the crystallization experiment.  相似文献   

3.
Non-ionic detergents are important tools for the investigation of interactions between membrane proteins and lipid membranes. Recent studies led to the question as to whether the ability to capture protein-lipid interactions depends on the properties of detergents or their concentration in purification buffers. To address this question, we present the synthesis of an asymmetric, hybrid detergent that combines the head groups of detergents with opposing delipidating properties. We discuss detergent properties and protein purification outcomes to reveal whether the properties of detergent micelles or the detergent concentration in purification buffers drive membrane protein delipidation. We anticipate that our findings will enable the development of rationally design detergents for future applications in membrane protein research.  相似文献   

4.
《Molecular membrane biology》2013,30(5-8):139-155
Abstract

Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-β-D-glucoside (β-OG), n-dodecyl-β-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.  相似文献   

5.
Affinity tags such as polyhistidine greatly facilitate recombinant protein production. The solubility of integral membrane proteins is maintained by the formation of protein-detergent complexes (PDCs), with detergent present at concentration above its critical micelle concentration (CMC). Removal of the affinity tag necessitates inclusion of an engineered protease cleavage site. A commonly utilized protease for tag removal is tobacco etch virus (TEV) protease. TEV is available in a recombinant form (rTEV) and frequently contains its own polyhistidine affinity tag for removal after use in enzymatic digestion. Proteolytic cleavage of the tagged domain is carried out by incubation of the protein with rTEV protease. We have observed that the efficiency of rTEV digestion decreases significantly in the presence of a variety of detergents utilized in purification, crystallization, and other biochemical studies of integral membrane proteins. This reduction in protease activity is suggestive of detergent-induced inhibition of rTEV. To test this hypothesis, we examined the effects of detergents upon the rTEV proteolytic digestion of a soluble fusion protein, alpha(1) platelet activating factor acetylhydrolase (PAFAHalpha(1)). Removal of a hexahistidine amino-terminal affinity tag has been characterized in the presence of 16 different detergents at concentrations above their respective CMCs. Our data indicate that half of the detergents tested reduce the activity of rTEV and that these detergents should be avoided or otherwise accounted for during rTEV digestion of recombinant integral membrane proteins.  相似文献   

6.
Cell-free expression has become a highly promising tool for the fast and efficient production of integral membrane proteins. The proteins can be produced as precipitates that solubilize in mild detergents usually without any prior denaturation steps. Alternatively, membrane proteins can be synthesized in a soluble form by adding detergents to the cell-free system. However, the effects of a representative variety of detergents on the production, solubility and activity of a wider range of membrane proteins upon cell-free expression are currently unknown. We therefore analyzed the cell-free expression of three structurally very different membrane proteins, namely the bacterial alpha-helical multidrug transporter, EmrE, the beta-barrel nucleoside transporter, Tsx, and the porcine vasopressin receptor of the eukaryotic superfamily of G-protein coupled receptors. All three membrane proteins could be produced in amounts of several mg per one ml of reaction mixture. In general, the detergent 1-myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] was found to be most effective for the resolubilization of membrane protein precipitates, while long chain polyoxyethylene-alkyl-ethers proved to be most suitable for the soluble expression of all three types of membrane proteins. The yield of soluble expressed membrane protein remained relatively stable above a certain threshold concentration of the detergents. We report, for the first time, the high-level cell-free expression of a beta-barrel type membrane protein in a functional form. Structural and functional variations of the analyzed membrane proteins are evident that correspond with the mode of expression and that depend on the supplied detergent.  相似文献   

7.
This review describes aspects of negative staining of isolated integral membrane proteins. Detergents play a central role in the isolation of membrane proteins and also in their solubility in aqueous solutions. Specimens of mixed micelles of membrane proteins and nonionic detergents can be easily prepared as long as the detergent concentration remains above the critical micellar concentration. Membrane proteins involved in the process of photosynthesis have been taken as examples to illustrate their interaction with different detergents. Upon negative staining, mixed micelles of membrane proteins and detergents show characteristic top and side view projections. On their sides, mixed micelles can easily aggregate into strings.  相似文献   

8.
The use of detergents for the structural study of membrane proteins is discussed with an emphasis on practical issues relating to membrane solubilization, protein aggregation, detergent purity and detergent quantitation. Detergents are useful reagents as mimics of lipid bilayers because of their self-assembling properties, but as a result, they have complex properties in solution. It can be difficult to maintain a solubilized membrane protein in a native conformational state, and the non-specific aggregation of detergent-solubilized proteins is a common problem. Empirical "stability screens" can be helpful in choosing which detergents, and which detergent concentrations, may be optimal for a given system.  相似文献   

9.
In membrane protein biochemical and structural studies, detergents are used to mimic membrane environment and maintain functional, stable conformation of membrane proteins in the absence of lipid bilayers. However, detergent concentration, esp. molar ratio of membrane protein to detergent is usually unknown. Here, a gas chromatography–mass spectrometry selected ion monitoring (GC–MS-SIM) method was developed to quantify four detergents which are frequently used in membrane protein structural studies. To remove excessive detergents, a filtered centrifugation using Centricon tubes was applied. A membrane protein Ig-Beta fragment in four different detergent micelles was exemplified. Detergent concentrations in the upper and lower fraction of the Centricon tube were measured after each round of centrifugation. The results were very consistent to basic properties of detergent micelles in aqueous solvents. Therefore, coupling of GC–MS-SIM and detergent removal by Centricon tubes, detergents concentration, esp. molar ratio of membrane protein to detergent could be controlled, which will expedite membrane protein structural and biochemical studies.  相似文献   

10.
Membrane proteins, lipids and detergents: not just a soap opera   总被引:1,自引:0,他引:1  
Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.  相似文献   

11.
The concentration of detergent in membrane protein preparations can have a critical role on protein stability, function, and the potential for crystallization. Unfortunately, dialysis or protein concentration can lead to an unknown amount of detergent in the final membrane protein preparations. Here we present a method for the determination of detergent concentration based on refractive index of the detergent solution. This method was applied to quantitate the amount of detergent remaining in solution after concentration in various concentrators. We found that the ability of the tested detergents to pass through the molecular weight cutoff membrane correlates well with detergent micelle size. Therefore, the micelle size can be used as a rough guide to estimate the retention of a given detergent in various molecular weight cutoff concentrators. The refractive index method is exceptionally informative when coupled with size exclusion chromatography and light scattering, and can be used to determine the oligomeric state of the membrane protein, the size of a protein-associated micelle, as well as the amount and size of the unbound detergent micelle.  相似文献   

12.
The preparation of a pure and homogeneous protein sample at proper concentration is a prerequisite for success when attempting their crystallization for structural determination. The detergents suitable for solubilization particularly of membrane proteins are not always the best for crystallization. Myelin of the peripheral nervous system of vertebrates is the example of a membrane for which neutral or "gentle" detergents are not even strong enough to solubilize its proteins. In contrast, sodium- or lithium-dodecyl sulfate is very effective. We solubilized myelin membrane in 2%(w/v) sodium dodecyl sulfate, followed by chromatographic purification of the hydrophobic myelin glycoproteins P0 and PASII/PMP22, and finally, we have exchanged the sodium dodecyl sulfate bound to protein for other neutral detergents using ceramic hydroxyapatite column. Theoretically, we should easily exchange sodium dodecyl sulfate for any neutral detergent, but for some of them, the solubility of myelin glycoproteins is low. To monitor the potential variability in the secondary structure of glycoproteins, we have used circular dichroism. Sodium dodecyl sulfate seems to be the appropriate detergent for the purpose of purification of very hydrophobic glycoproteins, since it can be easily exchanged for another neutral detergent.  相似文献   

13.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

14.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

15.
Detergents might affect membrane protein structures by promoting intramolecular interactions that are different from those found in native membrane bilayers, and fine-tuning detergent properties can be crucial for obtaining structural information of intact and functional transmembrane proteins. To systematically investigate the influence of the detergent concentration and acyl-chain length on the stability of a transmembrane protein structure, the stability of the human glycophorin A transmembrane helix dimer has been analyzed in lyso-phosphatidylcholine micelles of different acyl-chain length. While our results indicate that the transmembrane protein is destabilized in detergents with increasing chain-length, the diameter of the hydrophobic micelle core was found to be less crucial. Thus, hydrophobic mismatch appears to be less important in detergent micelles than in lipid bilayers and individual detergent molecules appear to be able to stretch within a micelle to match the hydrophobic thickness of the peptide. However, the stability of the GpA TM helix dimer linearly depends on the aggregation number of the lyso-PC detergents, indicating that not only is the chemistry of the detergent headgroup and acyl-chain region central for classifying a detergent as harsh or mild, but the detergent aggregation number might also be important.  相似文献   

16.
Structural studies on integral membrane proteins are routinely performed on protein-detergent complexes (PDCs) consisting of purified protein solubilized in a particular detergent. Of all the membrane protein crystal structures solved to date, a subset of only four detergents has been used in more than half of these structures. Unfortunately, many membrane proteins are not well behaved in these four detergents and/or fail to yield well-diffracting crystals. Identification of detergents that maintain the solubility and stability of a membrane protein is a critical step and can be a lengthy and “protein-expensive” process. We have developed an assay that characterizes the stability and size of membrane proteins exchanged into a panel of 94 commercially available and chemically diverse detergents. This differential filtration assay (DFA), using a set of filtered microplates, requires sub-milligram quantities of purified protein and small quantities of detergents and other reagents and is performed in its entirety in several hours.  相似文献   

17.
BACKGROUND: Lipid rafts are cholesterol- and glycosphingolipid-rich microdomains in the cellular plasma membranes that play critical roles in compartmentalization (concentration, coupling, and isolation) of receptors and signal molecules. Therefore, detecting constitutive or induced raft associations of such proteins is of central interest in cell biology. This has mostly been done with time- and cell-consuming immunobiochemical techniques affected by several sources of artifacts. A flow cytometric analysis of immunocytochemical staining under differential circumstances of detergent treatment offers a new alternative to this method. METHODS: Membrane microdomains are resistant to nonionic detergents due to extensive, strong interactions between their molecular constituents. We used this feature to develop a rapid flow cytometric assay of differential detergent resistance based on immunocytochemical labeling of extracellular domain epitopes in membrane proteins. Data evaluation is based on comparative detection of their detergent solubility without and with cholesterol depletion of cell membranes, resolved by moderate concentrations of nonionic detergents. RESULTS: Nonionic detergents Triton X-100 and Nonidet-40 (0.05-0.1%) in cold or Brij-98 (0.1-0.5%) at 37 degrees C efficiently resolved detergent solubility or resistance of many lymphocyte cell surface proteins. Kinetic data revealed that a short (5-10 min) detergent treatment is sufficient for this assay. Comparison of detergent solubility in untreated and cholesterol-depleted cells differentiated membrane proteins associated with or excluded from raft microdomains, respectively. Confocal microscopy showed that this mild detergent treatment leaves the cytoskeleton of the cells intact, with a detectable expression of raft marker detergent-resistant proteins attached to it. An induced association with rafts of immunoglobulin E receptors upon antigen cross-linking was also easily detectable in rat mast cells by this approach. CONCLUSIONS: A protocol is proposed for a rapid (5-10 min) test of detergent resistance of membrane proteins in cells. The approach requires only a small amount of cells (10(4)/sample) and offers a good resolution of detergent solubility or resistance of membrane proteins, also in terms of the underlying mechanisms, with an advantage of applicability for all conventional bench-top flow cytometers.  相似文献   

18.
A methodology that enables the identification and quantification of detergents frequently used in the purification of membrane proteins has been developed. The procedure consists of detergent separation via thin-layer chromatography, followed by visualization with iodine vapor staining and subsequent quantification with laser densitometry. We demonstrate that a panel of detergents that are frequently used to purify membrane proteins displays distinctive mobilities in a solvent system consisting of chloroform:methanol:ammonium hydroxide (63:35:5), thereby permitting their separation and identification. In addition, we establish with both the nonionic detergent dodecylmaltoside and the anionic detergent sarkosyl that a linear relationship between detergent quantity and optical density is obtained over a wide range of detergent levels. Furthermore, we demonstrate the accuracy and precision of the assay. Moreover, a strategy for determining the intrinsic iodine-staining capacity of a membrane protein following the removal of associated detergent is presented. Finally, we show the utility of this protocol in measuring detergent concentration following detergent exchange via gel filtration chromatography. The efficacy of this approach for characterizing the detergent present in purified membrane protein preparations prior to conducting crystallization trials is discussed.  相似文献   

19.
The poor stability of membrane proteins in detergent solution is one of the main technical barriers to their structural and functional characterization. Here we describe a solution to this problem for diacylglycerol kinase (DGK), an integral membrane protein from Escherichia coli. Twelve enhanced stability mutants of DGK were obtained using a simple screen. Four of the mutations were combined to create a quadruple mutant that had improved stability in a wide range of detergents. In n-octylglucoside, the wild-type DGK had a thermal inactivation half-life of 6 min at 55 degrees C, while the quadruple mutant displayed a half-life of 35 min at 80 degrees C. In addition, the quadruple mutant had improved thermodynamic stability. Our approach should be applicable to other membrane proteins that can be conveniently assayed.  相似文献   

20.
Arnold T  Linke D 《BioTechniques》2007,43(4):427-30, 432, 434 passim
Phase separation is a simple, efficient, and cheap method to purify and concentrate detergent-solubilized membrane proteins. In spite of this, phase separation is not widely used or even known among membrane protein scientists, and ready-to-use protocols are available for only relatively few detergent/membrane protein combinations. Here, we summarize the physical and chemical parameters that influence the phase separation behavior of detergents commonly used for membrane protein studies. Examples for the successful purification of membrane proteins using this method with different classes of detergents are provided. As the choice of the detergent is critical in many downstream applications (e.g., membrane protein crystallization or functional assays), we discuss how new phase separation protocols can be developed for a given detergent buffer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号