首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei’s survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC50) of PCF was 1.0 ± 0.2 μM for Isoxyl and 5 ± 2 μM for 10-TS, whereas BSF appeared more susceptible with EC50 values 0.10 ± 0.03 μM (Isoxyl) and 1.0 ± 0.6 μM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents’ survival.  相似文献   

2.
The procyclic stage of Trypanosoma brucei, a parasitic protist responsible for sleeping sickness in humans, converts most of the consumed glucose into excreted succinate, by succinic fermentation. Succinate is produced by the glycosomal and mitochondrial NADH-dependent fumarate reductases, which are not essential for parasite viability. To further explore the role of the succinic fermentation pathways, we studied the trypanosome fumarases, the enzymes providing fumarate to fumarate reductases. The T. brucei genome contains two class I fumarase genes encoding cytosolic (FHc) and mitochondrial (FHm) enzymes, which account for total cellular fumarase activity as shown by RNA interference. The growth arrest of a double RNA interference mutant cell line showing no fumarase activity indicates that fumarases are essential for the parasite. Interestingly, addition of fumarate to the medium rescues the growth phenotype, indicating that fumarate is an essential intermediary metabolite of the insect stage trypanosomes. We propose that trypanosomes use fumarate as an essential electron acceptor, as exemplified by the fumarate dependence previously reported for an enzyme of the essential de novo pyrimidine synthesis (Takashima, E., Inaoka, D. K., Osanai, A., Nara, T., Odaka, M., Aoki, T., Inaka, K., Harada, S., and Kita, K. (2002) Mol. Biochem. Parasitol. 122, 189-200).  相似文献   

3.
Glycosylphosphatidylinositol (GPI) is widely used by eukaryotic cell surface proteins for membrane attachment. De novo synthesized GPI precursors are attached to proteins post-translationally by the enzyme complex, GPI transamidase. TbGPI16, a component of the trypanosome transamidase, shares similarity with human PIG-T. Here, we show that TbGPI16 is the orthologue of PIG-T and an essential component of GPI transamidase by creating a TbGPI16 knockout. TbGPI16 forms a disulfide-linked complex with TbGPI8. A cysteine to serine mutant of TbGPI16 was unable to fully restore the surface expression of GPI-anchored proteins upon transfection into the knockout cells, indicating that its disulfide linkage with TbGPI8 is important for the full transamidase activity.  相似文献   

4.
The parasitic protozoa Trypanosoma brucei has a complex life cycle. Oxidative phosphorylation is highly active in the procyclic form but absent from bloodstream cells. The mitochondrial genome encodes several gene products that are required for oxidative phosphorylation, but it completely lacks tRNA genes. For mitochondrial translation to occur, the import of cytosolic tRNAs is therefore essential for procyclic T. brucei. Whether the same is true for the bloodstream form has not been studied so far. Here we show that the steady-state levels of mitochondrial tRNAs are essentially the same in both life stages. Editing of the imported tRNA(Trp) also occurs in both forms as well as in mitochondria of Trypanosoma evansi, which lacks a genome and a translation system. These results show that mitochondrial tRNA import is a constitutive process that must be mediated by proteins that are expressed in both forms of the life cycle and that are not encoded in the mitochondrial genome. Moreover, bloodstream cells lacking either mitochondria-specific translation elongation factor Tu or mitochondrial tryptophanyl-tRNA synthetase are not viable indicating that mitochondrial translation is also essential in this stage. Both of these proteins show trypanosomatid-specific features and may therefore be excellent novel drug targets.  相似文献   

5.
We report the cloning and sequencing of a gene encoding the farnesyl pyrophosphate synthase (FPPS) of Trypanosoma brucei. The protein (TbFPPS) is an attractive target for drug development because the growth of T. brucei has been shown to be inhibited by analogs of its substrates, the nitrogen containing bisphosphonates currently in use in bone resorption therapy. The protein predicted from the nucleotide sequence of the gene has 367 amino acids and a molecular mass of 42 kDa. Several sequence motifs found in other FPPSs are present in TbFPPS, including an 11-mer peptide insertion present also in the Trypanosoma cruzi FPPS. Heterologous expression of TbFPPS in Escherichia coli produced a functional enzyme that was inhibited by several nitrogen-containing bisphosphonates, such as pamidronate and risedronate. Risedronate was active in vivo against T. brucei infection in mice (giving a 60% survival rate), but pamidronate was not effective. The essential nature of TbFPPS was studied using RNA interference (RNAi) to inhibit the expression of the gene. Expression of TbFPPS double-stranded RNA in procyclic trypomastigotes caused specific degradation of mRNA. After 4 days of RNAi, the parasite growth rate declined and the cells subsequently died. Similar results were obtained with bloodstream form trypomastigotes, except that the RNAi system in this case was leaky and mRNA levels and parasites recovered with time. Molecular modeling and structure-activity investigations of enzyme and in vitro growth inhibition data resulted in similar pharmacophores, further validating TbFPPS as the target for bisphosphonates. These results establish that FPPS is essential for parasite viability and validate this enzyme as a target for drug development.  相似文献   

6.
Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNAs with their cognate amino acids. They are an essential part of each translation system and in eukaryotes are therefore found in both the cytosol and mitochondria. Thus, eukaryotes either have two distinct genes encoding the cytosolic and mitochondrial isoforms of each of these enzymes or a single gene encoding dually localized products. Trypanosomes require trans-splicing of a cap containing leader sequence onto the 5'-untranslated region of every mRNA. Recently we speculated that alternative trans-splicing could lead to the expression of proteins having amino-termini of different lengths that derive from the same gene. We now demonstrate that alternative trans-splicing, creating a long and a short spliced variant, is the mechanism for dual localization of trypanosomal isoleucyl-tRNA synthetase (IleRS). The protein product of the longer spliced variant possesses an amino-terminal presequence and is found exclusively in mitochondria. In contrast, the shorter spliced variant is translated to a cytosol-specific isoform lacking the presequence. Furthermore, we show that RNA stability is one mechanism determining the differential abundance of the two spliced isoforms.  相似文献   

7.
Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ‐phosphate of ATP to 2′‐deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C‐terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine‐derived nucleotides. In addition, we report the X‐ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design.  相似文献   

8.
9.
TbNOP86 and TbNOP66 are two novel nucleolar proteins isolated in Trypanosoma brucei. They share 92.6% identity, except for an additional C-terminal domain of TbNOP86 of 182 amino acids in length. Both proteins are found in Trypanosomatidae, but similarity to other eukaryotic proteins could not be found. TbNOP86 and TbNOP66 are expressed at similar level in procyclic and bloodstream forms, although the relative level of expression of TbNOP66 is 11 times lower. TbNOP86 undergoes post-translational modifications, as it is found predominantly at 110 kDa compared with the predicted 86 kDa. Immunofluorescence of overexpressed ty-tagged TbNOP86 and TbNOP66 showed that both proteins accumulated in the nucleolus of G(1) cells. This was confirmed by the co-localization of an endogenous TbNOP86-myc with the nucleolar protein Nopp140. TbNOP86-ty localization is cell cycle-regulated, because it colocalizes with the mitotic spindle in mitotic cells. TbNOP86 is required for mitotic progression in both life stages as depleted cells are enriched in the G(2)/M phase. In procyclic cells, a reduced growth rate is accompanied by an accumulation of zoids (0N1K), 2N1K, and multinucleated cells (xNyK). The 2N1K cells are blocked in late mitosis as nucleolar segregation is completed. TbNOP86 depletion in bloodstream form caused a drastic growth inhibition producing cells bearing two kinetoplasts and an enlarged nucleus (1N(*)2K), followed by an accumulation of 2N2K cells with connected nuclei and xNyK cells. These studies of TbNOP86 provide a more comprehensive account of proteins involved in mitotic events in trypanosomes and should lead to the identification of partners with similar function.  相似文献   

10.
Phosphatidylethanolamine (GPEtn), a major phospholipid component of trypanosome membranes, is synthesized de novo from ethanolamine through the Kennedy pathway. Here the composition of the GPEtn molecular species in the bloodstream form of Trypanosoma brucei is determined, along with new insights into phospholipid metabolism, by in vitro and in vivo characterization of a key enzyme of the Kennedy pathway, the cytosolic ethanolamine-phosphate cytidylyltransferase ( Tb ECT) . Gene knockout indicates that Tb ECT is essential for growth and survival, thus highlighting the importance of the Kennedy pathway for the pathogenic stage of the African trypanosome. Phosphatiylserine decarboxylation, a potential salvage pathway, does not appear to be active in cultured bloodstream form T. brucei , and it is not upregulated even when the Kennedy pathway is disrupted. In vivo metabolic labelling and phospholipid composition analysis by ESI-MS/MS of the knockout cells confirmed a significant decrease in GPEtn species, as well as changes in the relative abundance of other phospholipid species. Reduction in GPEtn levels had a profound influence on the morphology of the mutants and it compromised mitochondrial structure and function, as well as glycosylphosphatidylinositol anchor biosynthesis. Tb ECT is therefore genetically validated as a potential drug target against the African trypanosome.  相似文献   

11.
12.
RNA editing produces mature mitochondrial mRNAs in trypanosomatids by the insertion and deletion of uridylates. It is catalyzed by a multiprotein complex, the editosome. We identified TbMP44 among the components of enriched editosomes by a combination of mass spectrometry and DNA sequence database analysis. Inactivation of an ectopic TbMP44 allele in cells in which the endogenous alleles were disrupted abolished RNA editing, inhibited cell growth, and was eventually lethal to bloodstream form trypanosomes. Loss of TbMP44 mRNA was followed initially by a reduction in the editosome sedimentation coefficient and then by the absence of other editosome proteins despite the presence of the mRNA. Reactivation of TbMP44 gene expression resulted in the resumption of cell growth and the reappearance of editosomes. These data indicate that TbMP44 is a component of the editosome that is essential for editing and critical for the structural integrity of the editosome.  相似文献   

13.
Trypanothione reductase (TR), a flavoprotein oxidoreductase central to the unique thiol-redox system that operates in trypanosomatid protozoa, has been proposed as a potential target for the chemotherapy of trypanosomatid infections. In this study, targeted gene replacement was used to obtain evidence that TR is an essential cellular component and that its physiological function is crucial for parasite survival. Precise replacement of the Leishmania donovani tryA gene encoding TR was only possible upon simultaneous expression of the tryA coding region from an episome; in its absence, attempted removal of the last tryA allele invariably led to the generation of an extra copy of tryA , seemingly as a result of selective chromosomal polysomy. Partial replacement mutants were drastically affected in their ability to survive inside cytokine-activated macrophages in a murine model of Leishmania infection. As no compensatory mechanism for the partial loss of TR activity was observed in these mutants and as it was not possible to obtain viable Leishmania devoid of TR catalytic activity, specific inhibitors of this enzyme are likely to be useful anti-leishmanial agents for chemotherapeutic use.  相似文献   

14.
We recently suggested a novel site-specific N-glycosylation mechanism in Trypanosoma brucei whereby some protein N-glycosylation sites selectively receive Man9GlcNAc2 from Man9GlcNAc2-PP-Dol while others receive Man5GlcNA(2 from Man5GlcNAc2-PP-Dol. In this paper, we test this model by creating procyclic and bloodstream form null mutants of TbALG3, the gene that encodes the alpha-mannosyltransferase that converts Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol. The procyclic and bloodstream form TbALG3 null mutants grow with normal kinetics, remain infectious to mice and tsetse flies, respectively, and have normal morphology. However, both forms display aberrant N-glycosylation of their major surface glycoproteins, procylcin, and variant surface glycoprotein, respectively. Specifically, procyclin and variant surface glycoprotein N-glycosylation sites that are modified with Man9GlcNAc2 and processed no further than Man5GlcNAc2 in the wild type are glycosylated less efficiently but processed to complex structures in the mutant. These data confirm our model and refine it by demonstrating that the biantennary glycan transferred from Man5GlcNAc2-PP-Dol is the only route to complex N-glycans in T. brucei and that Man9GlcNAc2-PP-Dol is strictly a precursor for oligomannose structures. The origins of site-specific Man5GlcNAc2 or Man9GlcNAc2 transfer are discussed and an updated model of N-glycosylation in T. brucei is presented.  相似文献   

15.
Mammalian phosphatidic acid phosphatases, also called lipins, show high amino acid sequence identity to Saccharomyces cerevisiae Pah1p and catalyze the dephosphorylation of phosphatidic acid (PA) to diacylglycerol. Both the substrate and product of the reaction are key precursors for the synthesis of phospholipids and triacylglycerol (TAG). We now show that expression of the Trypanosoma brucei lipin homolog TbLpn is essential for parasite survival in culture. Inducible down‐regulation of TbLpn in T. brucei procyclic forms increased cellular PA content, decreased the numbers of lipid droplets, reduced TAG steady‐state levels and inhibited in vivo [3H]TAG formation after labeling trypanosomes with [3H]glycerol. In addition, fluorescence and transmission electron microscopy revealed that depletion of TbLpn caused major alterations in mitochondrial morphology and function, i.e., the appearance of distorted mitochondrial matrix, and reduced ATP production via oxidative phosphorylation. Effects of lipin depletion on mitochondrial integrity have previously not been reported. N‐ and C‐terminally tagged forms of TbLpn were localized in the cytosol.  相似文献   

16.
Staswick PE  Tiryaki I 《The Plant cell》2004,16(8):2117-2127
Despite its importance in a variety of plant defense responses, our understanding of how jasmonic acid (JA) functions at the biochemical level is limited. Several amino acid conjugates of JA were tested for their ability to complement the JA-insensitive Arabidopsis thaliana mutant jar1-1. Unlike free JA, JA-Ile inhibited root growth in jar1-1 to the same extent as in the wild type, whereas JA-Val, JA-Leu, and JA-Phe were ineffective inhibitors in both genotypes. Thin-layer chromatography and gas chromatography-mass spectrometry (GC-MS) analysis of products produced in vitro by recombinant JAR1 demonstrated that this enzyme forms JA-amido conjugates with several amino acids, including JA-Ile. JA-Val, -Leu, -Ile, and -Phe were each quantified in Arabidopsis seedlings by GC-MS. JA-Ile was found at 29.6 pmole g(-1) fresh weight (FW) in the wild type but was more than sevenfold lower in two jar1 alleles. JA-Leu, -Val, and -Phe were present at only low levels in both genotypes. Expression of wild-type JAR1 in transgenic jar1-1 plants restored sensitivity to JA and elevated JA-Ile to the same level as in the wild type. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) conjugated to JA was also found in plant tissue at 18.4 pmole g(-1) FW. JA-ACC was determined not be an effective jasmonate root inhibitor, and surprisingly, was twofold higher in the mutants than in the wild type. This suggests that another JA-conjugating enzyme(s) is present in Arabidopsis. Synthesis of JA-ACC might provide a mechanism to coregulate the availability of JA and ACC for conversion to the active hormones JA-Ile and ethylene, respectively. We conclude that JAR1 is a JA-amino synthetase that is required to activate JA for optimal signaling in Arabidopsis. Plant hormone activation by conjugation to amino acids and the enzymes involved in their formation were previously unknown.  相似文献   

17.
RNA editing ligase 1 (TbREL1) is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD) simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.  相似文献   

18.
Human gamma-glutamyl hydrolase (hGH) is a key enzyme in the metabolism of folic acid and in the pharmacology of many antifolate drugs. hGH catalyzes removal of the poly-gamma-glutamate chains of intracellular folic acid and antifolates. hGH crystallized as a homodimer with two putative active sites. However, the quaternary structure and the number of species of the enzyme in solution have not been determined. hGH has now been characterized using analytical ultracentrifugation and dynamic light scattering. HisTag fusion proteins of wild-type hGH, rat GH, and hGH expressed as a glycosylated protein were studied. Analyses of HisTag wild-type hGH were conducted over a range of protein concentrations (1.4-200 microM), ionic strengths (0-1 M NaCl), and pH (4.5-8.5). A single species with a molecular mass consistent with a homodimer was observed. Glycosylated hGH and HisTag rat gamma-glutamyl hydrolase also formed very stable homodimers. The lack of dissociation of the dimer, the large monomer-monomer interface, and the presence of catalytically essential Tyr-36 in the homodimer interface sequences suggest that homodimer formation is required for the hGH monomer to fold into an active conformation. The conservation of hGH monomer-monomer interface sequences in other mammalian and plant gamma-glutamyl hydrolase molecules suggests that they also exist as stable homodimers.  相似文献   

19.
The second step of glycosylphosphatidylinositol anchor biosynthesis in all eukaryotes is the conversion of D-GlcNAcalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol (GlcNAc-PI) to d-GlcNalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol by GlcNAc-PI de-N-acetylase. The genes encoding this activity are PIG-L and GPI12 in mammals and yeast, respectively. Fragments of putative GlcNAc-PI de-N-acetylase genes from Trypanosoma brucei and Leishmania major were identified in the respective genome project data bases. The full-length genes TbGPI12 and LmGPI12 were subsequently cloned, sequenced, and shown to complement a PIG-L-deficient Chinese hamster ovary cell line and restore surface expression of GPI-anchored proteins. A tetracycline-inducible bloodstream form T. brucei TbGPI12 conditional null mutant cell line was created and analyzed under nonpermissive conditions. TbGPI12 mRNA levels were reduced to undetectable levels within 8 h of tetracycline removal, and the cells died after 3-4 days. This demonstrates that TbGPI12 is an essential gene for the tsetse-transmitted parasite that causes Nagana in cattle and African sleeping sickness in humans. It also validates GlcNAc-PI de-N-acetylase as a potential drug target against these diseases. Washed parasite membranes were prepared from the conditional null mutant parasites after 48 h without tetracycline. These membranes were shown to be greatly reduced in GlcNAc-PI de-N-acetylase activity, but they retained their ability to make GlcNAc-PI and to process d-GlcNalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol to later glycosylphosphatidylinositol intermediates. These results suggest that the stabilities of other glycosylphosphatidylinositol pathway enzymes are not dependent on GlcNAc-PI de-N-acetylase levels.  相似文献   

20.
Trypanosoma brucei expresses two hexokinases that are 98% identical, namely, TbHK1 and TbHK2. Homozygous null TbHK2-/- procyclic-form parasites exhibit an increased doubling time, a change in cell morphology, and, surprisingly, a twofold increase in cellular hexokinase activity. Recombinant TbHK1 enzymatic activity is similar to that of other hexokinases, with apparent Km values for glucose and ATP of 0.09 +/- 0.02 mM and 0.28 +/- 0.1 mM, respectively. The k(cat) value for TbHK1 is 2.9 x 10(4) min(-1). TbHK1 can use mannose, fructose, 2-deoxyglucose, and glucosamine as substrates. In addition, TbHK1 is inhibited by fatty acids, with lauric, myristic, and palmitic acids being the most potent (with 50% inhibitory concentrations of 75.8, 78.4, and 62.4 microM, respectively). In contrast to TbHK1, recombinant TbHK2 lacks detectable enzymatic activity. Seven of the 10 amino acid differences between TbHK1 and TbHK2 lie within the C-terminal 18 amino acids of the polypeptides. Modeling of the proteins maps the C-terminal tails near the interdomain cleft of the enzyme that participates in the conformational change of the enzyme upon substrate binding. Replacing the last 18 amino acids of TbHK2 with the corresponding residues of TbHK1 yields an active recombinant protein with kinetic properties similar to those of TbHK1. Conversely, replacing the C-terminal tail of TbHK1 with the TbHK2 tail inactivates the enzyme. These findings suggest that the C-terminal tail of TbHK1 is important for hexokinase activity. The altered C-terminal tail of TbHK2, along with the phenotype of the knockout parasites, suggests a distinct function for the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号