首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Male sterility(MS),characterized by functional defects in male organs or gametes,is an important agronomic trait for hybrid seed production,especially for self-pollinated crops such as rice(Oryza sativa L)(Chen and Liu,2014).Spontaneous MS mutants are rare and difficult to maintain in nature,thus limiting basicresearch and breeding.Artificial mutants are typically generated by physical,chemical,or biological mutagenesis(Wei et al,2013).Recently developed genome editing systems such as CRISPR/Cas9 allow efficient and timesaving knockout of endogenous genes at specific sites(Smith et al,2000;Moscou and Bogdanove,2009;Gasiunas et al.,2012).  相似文献   

2.
We have cloned a new member of the RAD2/XPG nuclease family, OsGEN-L (OsGEN-like), from rice (Oryza sativa L.). OsGEN-L possesses two domains, the N- and I-regions, that are conserved in the RAD2/XPG nuclease family. Database searches and phylogenetic analyses revealed that OsGEN-L belongs to class 4 of the RAD2/XPG nuclease family, and OsGEN-L homologs were found in animals and higher plants. To elucidate the function of OsGEN-L, we generated rice OsGEN-L-RNAi transgenic plants in which OsGEN-L expression was silenced. Most of the OsGEN-L-RNAi plants displayed low fertility, and some of them were male-sterile. OsGEN-L-RNAi plants lacked mature pollen, resulting from a defect in early microspore development. A OsGEN-L-green fluorescent protein (GFP) fusion protein was localized in the nucleus, and the OsGEN-L promoter was specifically active in the anthers. Furthermore, a recombinant OsGEN-L protein possessed flap endonuclease activity and both single-stranded and double-stranded DNA-binding activities. Our results suggest that OsGEN-L plays an essential role in DNA metabolism required for early microspore development in rice.  相似文献   

3.
The mitochondrial genomes of Chlamydomonad algae lack the cox2 gene that encodes the essential subunit COX II of cytochrome c oxidase. COX II is normally a single polypeptide encoded by a single mitochondrial gene. In this work we cloned two nuclear genes encoding COX II from both Chlamydomonas reinhardtii and Polytomella sp. The cox2a gene encodes a protein, COX IIA, corresponding to the N-terminal portion of subunit II of cytochrome c oxidase, and the cox2b gene encodes COX IIB, corresponding to the C-terminal region. The cox2a and cox2b genes are located in the nucleus and are independently transcribed into mRNAs that are translated into separate polypeptides. These two proteins assemble with other cytochrome c oxidase subunits in the inner mitochondrial membrane to form the mature multi-subunit complex. We propose that during the evolution of the Chlorophyte algae, the cox2 gene was divided into two mitochondrial genes that were subsequently transferred to the nucleus. This event was evolutionarily distinct from the transfer of an intact cox2 gene to the nucleus in some members the Leguminosae plant family.  相似文献   

4.
The N‐type voltage‐gated calcium channel (CaV2.2) is a clinically endorsed target in chronic pain treatments. As directly targeting the channel can lead to multiple adverse side effects, targeting modulators of CaV2.2 may prove better. We previously identified ST1‐104, a short peptide from the collapsin response mediator protein 2 (CRMP2), which disrupted the CaV2.2–CRMP2 interaction and suppressed a model of HIV‐related neuropathy induced by anti‐retroviral therapy but not traumatic neuropathy. Here, we report ST2‐104 –a peptide wherein the cell‐penetrating TAT motif has been supplanted with a homopolyarginine motif, which dose‐dependently inhibits the CaV2.2–CRMP2 interaction and inhibits depolarization‐evoked Ca2+ influx in sensory neurons. Ca2+ influx via activation of vanilloid receptors is not affected by either peptide. Systemic administration of ST2‐104 does not affect thermal or tactile nociceptive behavioral changes. Importantly, ST2‐104 transiently reduces persistent mechanical hypersensitivity induced by systemic administration of the anti‐retroviral drug 2′,3′‐dideoxycytidine (ddC) and following tibial nerve injury (TNI). Possible mechanistic explanations for the broader efficacy of ST2‐104 are discussed.  相似文献   

5.
6.
J L Smith  J R Levin  C J Ingles  N Agabian 《Cell》1989,56(5):815-827
We have isolated the genes encoding the largest subunit of all three classes of RNA polymerase from Trypanosoma brucei. While the pol II largest subunit is encoded by a single gene in all organisms examined to date, trypanosomes contain two copies of the gene. Both genes are expressed in the procyclic and bloodstream stages of the trypanosome life cycle. The two pol II genes differ from one another in their coding sequences by 21 silent substitutions and 4 amino acid substitutions. In the core part of the large subunit, the predicted polypeptides are similar to other eukaryotic RNA polymerases. Both trypanosome pol II polypeptides, like those of other eukaryotes, also have a unique C-terminal extension. However, this domain in the trypanosome polypeptides, unlike those of other eukaryotes, is not a tandemly repeated heptapeptide sequence.  相似文献   

7.
Mammalian DNA ligases are composed of a conserved catalytic domain flanked by unrelated sequences. At the C-terminal end of the catalytic domain, there is a 16-amino acid sequence, known as the conserved peptide, whose role in the ligation reaction is unknown. Here we show that conserved positively charged residues at the C-terminal end of this motif are required for enzyme-AMP formation. These residues probably interact with the triphosphate tail of ATP, positioning it for nucleophilic attack by the active site lysine. Amino acid residues within the sequence RFPR, which is invariant in the conserved peptide of mammalian DNA ligases, play critical roles in the subsequent nucleotidyl transfer reaction that produces the DNA-adenylate intermediate. DNA binding by the N-terminal zinc finger of DNA ligase III, which is homologous with the two zinc fingers of poly(ADP-ribose) polymerase, is not required for DNA ligase activity in vitro or in vivo. However, this zinc finger enables DNA ligase III to interact with and ligate nicked DNA at physiological salt concentrations. We suggest that in vivo the DNA ligase III zinc finger may displace poly(ADP-ribose) polymerase from DNA strand breaks, allowing repair to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号