首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interspecific somatic cell hybrids containing single human chromosomes are valuable reagents for localization of cloned genes and DNA fragments to specific chromosomes, for the development of chromosome-specific libraries, and for generation of hybrid cell lines containing subchromosomal regions. A CHO somatic cell hybrid containing a single, intact human chromosome 14 (MHR14) was developed and confirmed by LINE PCR amplification gel pattern, by Alu-517 PCR product dot blot hybridization, and by cytogenetic analysis. MHR14 will serve as the chromosome source for the development of a radiation map of human chromosome 14.  相似文献   

2.
We have employed a pulsed field gel electrophoresis and Alu hybridization approach for identification of large restriction fragments on chromosome 6 and 22. This technique allows large portions of selected human chromosomes to be visualized as discrete hybridization signals. Somatic cell hybrid DNA which contains chromosome 6 or chromosome 22 was restricted with either Notl or Mlul. The restriction fragments were separated by pulsed field gel electrophoresis (PFGE) and hybridized against an Alu repetitive sequence (Blur 8). The hybridization signals result in a fingerprint-like pattern which is unique for each chromosome and each restriction enzyme. In addition, a continuous pattern of restriction fragments was demonstrated by gradually increasing puls times. This approach will also be suitable to analyze aberrant human chromosomes retained in somatic cell hybrids and can be used to analyze flow sorted human chromosomes. To this end, our method provides a valuable alternative to standard cytogenetic analysis.  相似文献   

3.
We demonstrate that the digestion of template DNAs with restriction endonucleases prior to Alu polymerase chain reaction ("restricted Alu-PCR") reduces the complexity of the Alu-primed amplification patterns of human DNA in somatic cell hybrids and allows a direct informative comparison of these patterns. A comparison of restricted Alu-PCR patterns of a monochromosomal hybrid retaining a human chromosome 17 (MH22-6) and a hybrid retaining a human chromosome 17 deleted for band p11.2 (DH110-D1) revealed four Alu-PCR products that were present in the former but absent in the latter hybrid. Hybridization of these fragments to the total Alu-PCR amplification products of the two hybrids confirmed their absence in DH110-D1 amplification products. Hybridization to a panel of somatic cell hybrids indicated that two of these fragments were deleted in the hybrid DH110-D1 and mapped to 17p11.2, as expected. However, two additional fragments were not deleted in the hybrid DH110-D1 and mapped to other regions of chromosome 17. An insertion-deletion polymorphism was associated with one of the latter fragments, which may be the mechanism for the lack of its amplification in the hybrid DH110-D1. Restricted Alu-PCR should enhance the applications of Alu-PCR and provides a new method for the identification of chromosome-specific polymorphic markers.  相似文献   

4.
To establish the chromosomal location of the human ACHE gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase (ACHE, acetylcholine acetylhydrolase, E.C. 3.1.1.7), a human-specific polymerase chain reaction (PCR) procedure that supports the selective amplification of ACHE DNA fragments from human genomic DNA was employed with 19 human-hamster somatic cell hybrids carrying one or more human chromosomes. Informative ACHE-specific PCR fragments were produced from two cell lines, both of which include human chromosome 7, but not with DNA from 17 cell hybrids carrying various combinations of all human chromosomes other than 7. Fluorescent in situ hybridization of biotinylated ACHE DNA with metaphase chromosomes from human peripheral blood lymphocytes revealed prominent labeling on the 7q22 position. Therefore, further tests were performed to confirm the chromosome 7 location. DNA samples from the two cell lines including chromosome 7 and the ACHE gene were positive with PCR primers informative for the human cystic fibrosis CFTR gene, known to reside at the 7q31.1 position, but negative for the ACHE-related butyrylcholinesterase (BCHE, acylcholine acylhydrolase, E.C. 3.1.1.8) gene, mapped at the 3q26-ter position, confirming that these lines contain chromosome 7 but not chromosome 3. In contrast, three other cell lines including chromosome 3, but not 7, were BCHE-positive and ACHE-negative. In addition, genomic DNA from a sorted chromosome 7 library supported the production of ACHE- but not BCHE-specific PCR products, whereas with DNA from a sorted chromosome 3 library, the BCHE but not the ACHE fragment was amplified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have employed an irradiation and fusion procedure to generate somatic cell hybrids containing various fragments of the short arm of human chromosome 12 using a 12p-only hybrid (M28) as starting material. For the initial identification of hybrids retaining human DNA, nonradioactive in situ hybridization was performed. Seventeen cell lines appeared to contain detectable amounts of human material. Detailed characterization of these hybrids by Southern blot analysis and chromosomal in situ suppression hybridization (chromosome painting), using hybrid DNAs as probes after Alu element-mediated PCR, resulted in a hybrid panel encompassing the entire chromosome 12p arm. This panel will provide a valuable resource for the rapid isolation of region-specific DNA markers. In addition, this panel may be useful for the characterization of chromosome 12 aberrations in, e.g., human germ cell tumors.  相似文献   

6.
To establish the chromosomal location of the human ACHE gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase (ACHE, acetylcholine acetylhydrolase, E.C. 3.1.1.7), a human-specific polymerase chain reaction (PCR) procedure that supports the selective amplification of ACHE DNA fragments from human genomic DNA was employed with 19 human-hamster somatic cell hybrids carrying one or more human chromosomes. Informative ACHE-specific PCR fragments were produced from two cell lines, both of which include human chromosome 7, but not with DNA from 17 cell hybrids carrying various combinations of all human chromosomes other than 7. Fluorescent in situ hybridization of biotinylated ACHE DNA with metaphase chromosomes from human peripheral blood lymphocytes revealed prominent labeling on the 7q22 position. Therefore, further tests were performed to confirm the chromosome 7 location. DNA samples from the two cell lines including chromosome 7 and the ACHE gene were positive with PCR primers informative for the human cystic fibrosis CFTR gene, known to reside at the 7q31.1 position, but negative for the ACHE-related butyrylcholinesterase (BCHE, acylcholine acylhydrolase, E.C. 3.1.1.8) gene, mapped at the 3q26-ter position, confirming that these lines contain chromosome 7 but not chromosome 3. In contrast, three other cell lines including chromosome 3, but not 7, were BCHE-positive and ACHE-negative. In addition, genomic DNA from a sorted chromosome 7 library supported the production of ACHE- but not BCHE-specific PCR products, whereas with DNA from a sorted chromosome 3 library, the BCHE but not the ACHE fragment was amplified. These findings assign the human ACHE gene to a single locus on chromosome 7q22 and should assist in establishing linkage between the in vivo amplification of the ACHE gene in ovarian tumors and leukemias and the phenomenon of tumor-related breakage in the long arm of chromosome 7.  相似文献   

7.
"PCR-karyotype" of human chromosomes in somatic cell hybrids   总被引:4,自引:0,他引:4  
Amplification of human DNA sequences in 16 monochromosomal somatic cell hybrids containing different human chromosomes were performed by the polymerase chain reaction (PCR) using primer directed at human-specific regions of Alu or L1, the two major classes of interspersed repetitive sequences (IRS-PCR). A chromosome-specific pattern of amplification products was observed on agarose gels run with ethidium bromide, producing a "PCR-karyotype." This simple gel analysis provides a rapid method for identifying and monitoring the human chromosomal content of monochromosomal somatic cell hybrids without conventional cytogenetic analysis. Hybrids containing multiple human chromosome produce complex gel patterns, but identification of chromosome content can be achieved by hybridization of PCR products against a reference panel of monochromosomal or highly reduced hybrids representing each human chromosome. This dot-blot method also enables identification of human marker chromosomes or translocated pieces in hybrids that are not identifiable by cytogenetic methods. These IRS-PCR methods should greatly reduce the need for more laborious cytogenetic, isozyme, and Southern blot characterizations of human-rodent cell hybrids.  相似文献   

8.
The Alu-polymerase chain reaction (Alu-PCR) was applied to selectively amplify DNA sequences from human chromosome 6 using a single primer (A1) directed to the human Alu consensus sequence. A specific amplification pattern was demonstrated for a panel of eight somatic cell hybrids containing different portions of chromosome 6. This PCR pattern permits the identification of submicroscopic DNA alterations and can be utilized as a reference for additional chromosome 6-specific hybrids. To obtain new chromosome 6-specific markers we established two libraries from PCR-amplified sequences using two somatic cell hybrids (MCH381.2D and 640-5A). Out of a total of 109 clones that were found to be chromosome 6 specific, 13 clones were regionally assigned. We also included a procedure that allows the isolation of chromosome 6-specific markers from hybrids that contain human chromosomes other than 6. Our results will contribute to the molecular characterization of chromosome 6 by fostering characterization of somatic cell hybrids and by the generation of new regionally assigned DNA markers.  相似文献   

9.
DNA isolated from a rodent-human hybrid cell line containing human chromosomes 3, 7, 9, 10, 14 and 22 was cloned in the plasmid vector pAT153. Recombinant plasmids containing inserts of human origin were identified by colony hybridization to 32P-labelled human DNA under conditions in which only repetitive sequences interact. Single- and low-copy sequences were liberated from these plasmids by restriction endonuclease digestion and used as hybridization probes against human DNA and DNA isolated from a panel of Chinese hamster-human hybrids. One single-copy probe was shown to react with a genomic sequence unique to human chromosome 7 and to recognize an apparent restriction fragment size polymorphism in human DNA.  相似文献   

10.
We have examined the restriction endonuclease cleavage patterns exhibited by the mitochondrial DNAs (mtDNA) of four chloramphenicol-resistant (CAPR) human x mouse hybrids and one CAPR cybrid derived from CAPR HeLa cells and CAPS mouse RAG cells. Restriction fragments of mtDNAs were separated by electrophoresis and transferred by the Southern technique to diazobenzyloxymethyl paper. The covalently bound DNA fragments were hybridized initially with 32P-labeled complementary RNA (cRNA) prepared from human mtDNA and, after removal of the human probe, hybridized with mouse [32P]cRNA prepared from mouse mtDNA. Three hybrids which preferentially segregated human chromosomes and the cybrid exhibited mtDNA fragments indistinguishable from mouse cells. One hybrid, ROH8A, which exhibited "reverse" chromosome segregation, contained only human mtDNA. The pattern of chromosome and mtDNA segregation observed in these hybrids and the cybrid support the hypothesis that a complete set of human chromosomes must be retained if a human-mouse hybrid is to retain human mitochondrial DNA.  相似文献   

11.
The chromosomal location of the human gene for erythropoietin (EPO) was determined by Southern blot hybridization analysis of a panel of human-mouse somatic hybrid cell DNAs. DNAs from cell hybrids containing reduced numbers of human chromosomes were treated with the restriction enzyme PstI and screened with a cloned human EPO cDNA probe. EPO is assigned to human chromosome 7 based on the complete cosegregation of EPO with this chromosome in all 45 cell hybrids tested. A cell hybrid containing a translocated derivative of chromosome 7 localizes EPO to 7pter----q22. A HindIII restriction fragment length polymorphism is detected by hybridization of the EPO cDNA probe to human genomic DNA.  相似文献   

12.
Mammals can be molecular sexed by polymerase chain reaction (PCR) amplification of Y chromosome fragments or coamplification of homologous fragments from both sex chromosomes, which are discriminated by size polymorphism or Y‐specific restriction digestion. Although coamplification of X and Y fragments is more reliable, size polymorphism in homologous fragments is uncommon and Y‐specific restriction site identification requires screening with a battery of enzymes or cloning. Here we describe a simple approach, using ‘double peaks’ in the chromatogram upon direct sequencing of PCR products from males, to identify Y‐specific restriction sites, and demonstrate its utility by application to a range of taxa.  相似文献   

13.
Chromosome-specific DNA markers provide a powerful approach for studying complex problems in human genetics and offer an opportunity to begin understanding the human genome at the molecular level. The approach described here for isolating and characterizing DNA markers specific to human chromosome 15 involved construction of a partial chromosome-15 phage library from a human/Chinese hamster cell hybrid with a single human chromosome 15. Restriction fragments that identified unique- and low-copy loci on chromosome 15 were isolated from the phage inserts. These fragments were regionally mapped to the chromosome by three methods, including Southern analysis with a mapping panel of cell hybrids, in situ hybridization to metaphase chromosomes, and quantitative hybridization or dosage analysis. A total of 42 restriction fragments of unique- and low-copy sequences were identified in 14 phage. The majority of the fragments that have been characterized so far exhibited the hybridization pattern of a unique locus on chromosome 15. Regional mapping assigned these markers to specific locations on chromosome 15, including q24-25, q21-23, q13-14, q11-12, and q11. RFLP analysis revealed that several markers displayed polymorphisms at frequencies useful for genetic linkage analysis. The markers mapped to the proximal long arm of chromosome 15 are particularly valuable for the molecular analysis of Prader-Willi syndrome, which maps to this region. Polymorphic markers in this region may also be useful for definitively establishing linkage with one form of dyslexia. DNA probes in this chromosomal region should facilitate molecular structural analysis for elucidation of the nature of instability in this region, which is frequently associated with chromosomal aberrations.  相似文献   

14.
M C Simmler  R D Cox  P Avner 《Genomics》1991,10(3):770-778
A strategy for the rapid isolation of DNA probes from radiation-fusion Chinese hamster cell hybrids containing overlapping portions of the murine X chromosome based on the interspersed repetitive sequence polymerase chain reaction (IRS-PCR) previously used with human somatic cell hybrids has been developed. This specific amplification of mouse DNA on a hamster background depends on the use of primers directed to the B2 short interspersed repeat element family and the R repeat, from the long interspersed repeat element family, L1. Two sets of amplification conditions, which gave specific amplification of mouse DNA from either a mouse X-monochromosomal hybrid or irradiation-fusion hybrids having reduced X content, were defined. The mouse X-only chromosome hybrid yielded approximately 20 discrete reproducible bands, while the irradiation-fusion hybrids yielded between 1 and 10 discrete products. Comparison of different irradiation-fusion hybrids has allowed the definition of both specific and shared products corresponding to different regions within the overlapping X-chromosome fragments present within these hybrids. Use of such hybrids and the IRS-PCR technique has allowed the isolation of probes corresponding to the central region of the mouse X chromosome that contains the X-inactivation center. The method should be widely applicable to the isolation of mouse DNA sequences from mouse hybrid cell lines on either human or Chinese hamster backgrounds.  相似文献   

15.
Human DNA restriction fragments containing high numbers of Alu repeat sequences can be preferentially detected in the presence of other human DNA restriction fragments in DNA from human:rodent somatic cell hybrids when the DNA is fragmented with enzymes that cleave mammalian DNA infrequently. This ability to lower the observed human DNA complexity allowed us to develop an approach to order rapidly somatic hybrid cell lines retaining overlapping human genomic domains. The ordering process also generates a relative physical map of the human fragments detected with Alu probe DNA. This process can generate physical mapping information for human genomic domains as large as an entire chromosome (100,000 kb). The strategy is demonstrated by ordering Alu-detected NotI fragments in a panel of mouse:human hybrid cells that span the entire long arm of human chromosome 17.by L. Manuelidis  相似文献   

16.
The recent advent of Alu element-mediated PCR (Alu PCR) allows the rapid isolation of human-specific fragments from mixed DNA sources. This technique greatly facilitates the isolation of DNA fragments from specific regions of the human genome. We report a novel technique utilizing Alu PCR products as differential hybridization probes to isolate human DNA fragments from a chromosomal subregion. We used the Alu PCR products from a pair of somatic cell hybrids in which the human DNA content differs only in the 5q11.2-q13.3 region as differential hybridization probes. One hybrid (GM10114) retains an intact chromosome 5, while the other (HHW1064) contains a chromosome 5 deleted for the q11.2-q13.3 region. Phage from a flow-sorted chromosome 5 library were hybridized with the Alu PCR synthesis product from the chromosome 5 hybrid. Positively hybridizing phage were then screened with the Alu PCR product from the deletion 5 hybrid. Phage that hybridized to the Alu PCR product of the chromosome 5 hybrid but did not hybridize to the Alu PCR product of the deletion 5 hybrid were further characterized. We isolated five phage from 5q11.2-q13.3 using this differential hybridization procedure. Only one of these phage corresponded to a detectable difference between the ethidium bromide-stained Alu PCR products of the two somatic cell hybrids. This technique should be applicable to any somatic cell hybrid-deletion hybrid pair.  相似文献   

17.
DNA was extracted from various rodent-human somatic cell hybrids that contained single or a few human chromosomes. These DNAs were examined by a combination of restriction endonuclease digestion, gel electrophoresis, and filter hybridisation to radioactive satellite DNA probes following transfer of the denatured restriction fragments from a gel to a nitrocellulose filter. In this way the arrangement of sequences homologous to human satellite III were examined on human chromosomes 1, 7, 11, 15, 22 and X. It was found that the distribution of restriction endonuclease sites within satellite III DNA is different on different chromosomes.  相似文献   

18.
The sites of sequences homologous to a murine cDNA for ribonucleotide reductase (RR) subunit M2 were determined on human and murine chromosomes by Southern blot analysis of interspecies somatic cell hybrid lines and by in situ hybridization. In the human genome, four chromosomal sites carrying RRM2-related sequences were identified at 1p31----p33, 1q21----q23, 2p24----p25, and Xp11----p21. In the mouse, M2 sequences were found on chromosomes 4, 7, 12, and 13 by somatic cell hybrid studies. By Southern analysis of human hydroxyurea-resistant cells that overproduce M2 because of gene amplification, we have identified the amplified restriction fragments as those that map to chromosome 2. To further confirm the site of the functional RRM2 locus, two other cDNA clones, p5-8 and S7 (coding for ornithine decarboxylase; ODC), which are coamplified with RRM2 sequences in human and rodent hydroxyurea-resistant cell lines, were mapped by Southern and in situ hybridization. Their chromosomal map positions coincided with the region of human chromosome 2 (p24----p25) that also contains one of the four RRM2-like sequences. Since this RRM2 sequence and p5-8 and ODC are most likely part of the same amplification unit, the RRM2 structural gene can be assigned to human chromosome 2p24----p25. This region is homologous to a region of mouse chromosome 12 that also carries one of numerous ODC-like sequences. In an RRM2-overproducing mouse cell line, we found amplification of the chromosome 12-specific restriction fragments. Thus, we conclude that mouse chromosome 12 carries the functional locus for RRM2.  相似文献   

19.
Human salivary proline-rich protein genes on chromosome 12.   总被引:4,自引:3,他引:1  
A DNA probe (PRP1) for the proline-rich protein (PRP) genes was used to analyze the segregation of human PRP genes in human X mouse somatic cell hybrids. Endonuclease restriction analysis of 22 independent hybrid clones segregating human chromosomes demonstrated that PRP genes segregate with human chromosome 12 only and were therefore assigned to that chromosome. The PRP1 probe should prove useful for further mapping studies of human chromosome 12.  相似文献   

20.
The chromosomal locations of the genes for the common alpha subunit of the glycoprotein hormones and the beta subunit of chorionic gonadotropin in humans and mice have been determined by restriction enzyme analysis of DNA isolated from somatic cell hybrids. The CG alpha gene (CGA), detected as a 15-kb BamHI fragment in human DNA by hybridization to CG alpha cDNA, segregated with the chromosome 6 enzyme markers ME1 (malic enzyme, soluble) and SOD2 (superoxide dismutase, mitchondrial) and an intact chromosome 6 in human-rodent hybrids. Cell hybrids containing portions of chromosome 6 allowed the localization of CGA to the q12 leads to q21 region. The greater than 30- and 6.5-kb BamHI CGB fragments hybridizing to human CG beta cDNA segregated concordantly with the human chromosome 19 marker enzymes PEPD (peptidase D) and GPI (glucose phosphate isomerase) and a normal chromosome 19 in karyotyped hybrids. A KpnI-HindIII digest of cell hybrid DNAs indicated that the multiple copies of the CG beta gene are all located on human chromosome 19. In the mouse, the alpha subunit gene, detected by a mouse thyrotropin (TSH) alpha subunit probe, and the CG beta-like sequences (CG beta-LH beta), detected by the human CG beta cDNA probe, are on chromosomes 4 and 7, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号