首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niemann-Pick type C (NPC) is a neurodegenerative disorder characterized by progressive accumulation of cholesterol, gangliosides, and other lipids in the central nervous system and visceral organs. In the NPC1 mouse model, neurodegeneration and neuronal cell loss occur before postnatal day 21. Whether neuronal cholesterol accumulation occurs in vivo before the first signs of neuronal cell loss has not been demonstrated. In this report, we used the NPC1 mouse model and employed a novel cholesterol binding reagent, BC theta, that enabled us to visualize cellular cholesterol accumulation at a level previously unattainable. The results demonstrate the superiority of BC theta staining over conventional filipin staining in confocal microscopy and highlight several new findings. We show that at postnatal day 9, although only mild signs of neurodegeneration are detectable, significant neuronal cholesterol accumulation has already occurred throughout the NPC1 brain. In addition, although NPC1 Purkinje neurons exhibit a normal morphology at day 9, significant cholesterol accumulation within their extensive dendritic trees has occurred. We also show that in the thalamus and cortex of NPC1 mice, activated glial cells first appear at postnatal day 9 and heavily populate by day 22, suggesting that in NPC1 mice, neuronal cholesterol accumulation precedes neuronal injury and neuronal cell loss.  相似文献   

2.
Bi X  Liao G 《Autophagy》2007,3(6):646-648
Increasing evidence shows that autophagy, particularly macroautophagy, plays a Dr. Jekyll and Mr. Hyde role in determining cell fate; autophagic activity can be protective under certain conditions, whereas it may lead to cell death under others. Niemann-Pick Type C (NPC) disease is an early onset autosomal recessive disorder characterized by accumulation of cholesterol and other lipids in late endosomes/lysosomes. About 95% of the cases are caused by mutations in the NPC1 gene, whereas the remaining 5% are due to mutations in the NPC2 gene. Severe neurodegeneration that accompanies NPC is likely the fatal cause in this disease, although the underlying mechanism remains unclear. Our study shows that autophagic activity is enhanced in Npc1-/- mice, as evidenced by increased levels of LC3-II and the number of autophagic vacuole-like structures. Interestingly, LC3 immunoreactivity co-localizes with filipin-labeled cholesterol clusters inside Purkinje cells. Furthermore, increases in autophagic activity are closely associated with alteration in lysosomal function and protein ubiquitination. In this article, these results are further discussed in the context of autophagic-lysosomal function and neuronal survival and degeneration.  相似文献   

3.

Background

Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC) disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i) NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF) after axotomy and ii) PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF.

Results

NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT), whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-?? signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A.

Conclusions

Our results suggest that the NPC cellular phenotype causes neuronal dysfunction through the abnormal up-regulation of survival pathways, which causes the perturbation of signaling cascades and anomalous phosphorylation of the cytoskeleton.  相似文献   

4.
Niemann-Pick type C1 (NPC1) is a late endosomal transmembrane protein, which, together with NPC2 in the endosome lumen, mediates the transport of endosomal cholesterol to the plasma membrane and endoplasmic reticulum. Loss of function of NPC1 or NPC2 leads to cholesterol accumulation in late endosomes and causes neuronal dysfunction and neurodegeneration. Recent studies indicate that cholesterol also accumulates in mitochondria of NPC1-deficient cells and brain tissue and that NPC1 deficiency leads to alterations in mitochondrial function and energy metabolism. Here, we have investigated the effects of increased mitochondrial cholesterol levels on energy metabolism, using RNA interference to deplete Chinese hamster ovary cells of NPC1 alone or in combination with MLN64, which mediates endosomal cholesterol transport to mitochondria. Mitochondrial cholesterol levels were also altered by depletion of NPC2 in combination with the expression of NPC2 mutants. We found that the depletion of NPC1 increased lactate secretion, decreased glutamine-dependent mitochondrial respiration, and decreased ATP transport across mitochondrial membranes. These metabolic alterations did not occur when transport of endosomal cholesterol to mitochondria was blocked. In addition, the elevated mitochondrial cholesterol levels in NPC1-depleted cells and in NPC2-depleted cells expressing mutant NPC2 that allows endosomal cholesterol trafficking to mitochondria were associated with increased expression of the antioxidant response factor Nrf2. Antioxidant treatment not only prevented the increase in Nrf2 mRNA levels but also prevented the increased lactate secretion in NPC1-depleted cells. These results suggest that mitochondrial cholesterol accumulation can increase oxidative stress and in turn cause increased glycolysis to lactate and other metabolic alterations.  相似文献   

5.
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder caused by mutations in either the NPC1 or HE1 genes. Hallmarks of this presently incurable disease include abnormal intracellular accumulation of cholesterol and glycosphingolipids, progressive neuropathology and neurodegeneration, and premature death. There have been increased efforts to understand the effects of NPC disease on neurons of the brain, in part due to the recent development of improved research tools and reagents, and in part due to the rapidly growing appreciation of the importance of cholesterol and lipoproteins in the brain during neuronal development, function, and degeneration. Here, we highlight fundamental aspects of neurons that appear to be affected by NPC disease, including their morphology, metabolism, intracellular transport, electrical signaling, and response to environmental factors, and suggest other potentially important areas for future investigation. This provides a framework for acquiring additional insight to this disorder and shaping new therapeutic approaches to NPC disease.  相似文献   

6.
Ng  Chee-Hon  Wang  Xin-Sheng  Ong  Wei-Yi 《Brain Cell Biology》2000,29(8):595-603
The present study aimed to elucidate the distribution of the GABA transporter GAT-3 in the monkey basal ganglia and brainstem. Very dense GAT-3 immunoreactivity was observed in the medial septum, diagonal band, basal nucleus of Meynert, thalamus, globus pallidus, and substantia nigra. Moderate levels were observed in the subthalamic nucleus, periaqueductal grey, spinal trigeminal and vestibular nuclei. A general light level of staining was observed in the remainder of the brainstem regions, and very light staining was observed in the caudate nucleus and putamen. Electron microscopy showed that GAT-3 immunoreactivity was present in cell bodies with light cytoplasm and dense bundles of glial filaments, and features of astrocytes. Large numbers of astrocytic processes were also labeled in the neuropil. The cell bodies and processes of neurons were unlabeled. Further study is necessary to elucidate GAT-3 expression in neurological conditions, including hyperalgesia and Parkinson's disease.  相似文献   

7.
Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with cholesterol or U18666A, which induces late endosomal cholesterol accumulation. Up-regulation of exosomal cholesterol release was also observed after siRNA-mediated knockdown of NPC1 and in fibroblasts derived from NPC1 patients and could be reversed by expression of wild-type NPC1. We provide evidence that exosomal cholesterol secretion depends on the presence of flotillin. Our findings indicate that exosomal release of cholesterol may serve as a cellular mechanism to partially bypass the traffic block that results in the toxic lysosomal cholesterol accumulation in Niemann-Pick type C1 disease. Furthermore, we suggest that secretion of cholesterol by exosomes contributes to maintain cellular cholesterol homeostasis.  相似文献   

8.
We examined the distribution of gamma-aminobutyric acid-like immunoreactivity (GABA-LI) in the rat kidney by light and electron microscopy. In vibratome sections, GABA-LI was present in both the renal medulla and cortex. The inner stripe of the outer medulla was most heavily and almost homogeneously labeled, whereas GABA-LI in the cortex was mainly confined only to some tubules. GABA-positive structures involved the epithelial cells of the thin and the thick ascending limbs of the loop of Henle, the connecting tubules, and the collecting ducts. In GABA-positive connecting tubules and collecting ducts the immunoreactivity was present in the cytoplasm of about half of the epithelial cells. As revealed by electron microscopy, the labeled cells in the collecting tubules were the light (principal) cells. No GABA-LI occurred in neuronal structures. These findings are consistent with the presence of a non-neuronal GABA system in the rat kidney. Furthermore, the specific distribution of GABA in the tubular epithelium suggests a functional significance of this amino acid in tubular transport processes.  相似文献   

9.
Niemann-Pick type C1 (NPC1) disease is an autosomal recessive, fatal disorder characterized by a defect in cholesterol trafficking and progressive neurodegeneration. The disease is predominantly caused by mutations in the NPC1 gene; however, it has been assumed that heterozygous NPC1 mutations do not cause any symptoms. Here we demonstrate that cholesterol accumulation does not occur in young mouse brains; however, it does in aged (104-106-week-old) NPC1+/- mouse brains. In addition, Purkinje cell loss was observed in aged NPC1+/- mouse cerebellums. Immunoblot analysis using anti-phospho-tau antibodies (AT-8, AT-100, AT-180, AT-270, PHF-1, and SMI-31) demonstrates the site-specific phosphorylation of tau at Ser-199, Ser-202, Ser-212, and Thr-214 in the brains of aged NPC1+/- mice. Mitogen-activated protein kinase, a potential serine kinase known to phosphorylate tau, was activated, whereas other serine kinases, including glycogen synthase kinase 3beta, cyclin-dependent kinase 5, or stress-activated protein kinase/c-Jun N-terminal kinase were not activated. Cholesterol level in the lipid raft isolated from the cerebral cortices, ATP level, and ATP synthase activity in the cerebral cortices significantly decreased in the aged NPC1+/- brains compared with those in the NPC1+/+ brains. All of these changes observed in NPC1+/- brains were determined to be associated with aging and were not observed in the age-matched NPC1+/+ brains. These results clearly demonstrate that heterozygous NPC1 impairs neuronal functions and causes neurodegeneration in aged mouse brains, suggesting that human heterozygous NPC1 mutations may be a risk factor for neurodegenerative disorders, such as tauopathy, in the aged population.  相似文献   

10.
Niemann-Pick type C1 (NPC1) disease is a fatal hereditary disorder characterized by a defect in cholesterol trafficking and progressive neurodegeneration. Although the NPC1 gene has been identified, the molecular mechanism responsible for neuronal dysfunction in brains of patients with NPC1 disease remains unknown. This study demonstrates that the amount of cholesterol within mitochondria membranes is significantly elevated in NPC1 mouse brains and neural cells. In addition, the mitochondrial membrane potential, the activity of ATP synthase, and henceforth the level of ATP are markedly decreased in NPC1 mouse brains and neurons. Importantly, reducing the level of cholesterol within mitochondrial membranes using methyl-beta-cyclodextrin can restore the activity of ATP synthase. Finally, NPC1 neurons show an impaired neurite outgrowth, which can be rescued by exogenous ATP. These results suggest that mitochondrial dysfunctions and subsequent ATP deficiency, which are induced by altered cholesterol metabolism in mitochondria, may be responsible for neuronal impairment in NPC1 disease.  相似文献   

11.
The present study was carried out to elucidate the distribution of calcium-independent phospholipase A2 (iPLA2) in the normal monkey brain. iPLA2 immunoreactivity was observed in structures derived from the telencephalon, including the cerebral neocortex, amygdala, hippocampus, caudate nucleus, putamen, and nucleus accumbens, whereas structures derived from the diencephalon, including the thalamus, hypothalamus and globus pallidus were lightly labeled. The midbrain, vestibular, trigeminal and inferior olivary nuclei, and the cerebellar cortex were densely labeled. Immunoreactivity was observed on the nuclear envelope of neurons, and dendrites and axon terminals at electron microscopy. Western blot analysis showed higher levels of iPLA2 protein in the cytosolic, than the nuclear fraction, but little or no protein in the membrane fraction. Similarly, subcellular fractionation studies of iPLA2 activity in rat brain cortical cell cultures showed greater enzymatic activity in the cytosolic, than the nuclear fraction, and the least activity in non-nuclear membranes. The association of iPLA2 with the nuclear envelope suggests a role of the enzyme in nuclear signaling, such as during neuronal proliferation and differentiation or death. In addition, the localization of iPLA2 in dendrites and axon terminals suggests a role of the enzyme in neuronal signaling.  相似文献   

12.
Consequences of NPC1 and NPC2 loss of function in mammalian neurons   总被引:7,自引:0,他引:7  
Genetic deficiency of NPC1 or NPC2 results in a devastating cholesterol-glycosphingolipidosis of brain and other organs known as Niemann-Pick type C (NPC) disease. While NPC1 is a transmembrane protein believed involved in retroendocytic shuttling of substrate(s) to the Golgi and possibly elsewhere in cells as part of an essential recycling/homeostatic control mechanism, NPC2 is a soluble lysosomal protein known to bind cholesterol. The precise role(s) of NPC1 and NPC2 in endosomal-lysosomal function remain unclear, nor is it known whether the two proteins directly interact as part of this function. The pathologic features of NPC disease, however, are well documented. Brain cells undergo massive intracellular accumulation of glycosphingolipids (lactosylceramide, glucosylceramide, GM2 and GM3 gangliosides) and cholesterol and concomitant distortion of neuron shape (meganeurite formation). In neurons from humans with NPC disease the metabolic defects and storage often lead to extensive growth of new, ectopic dendrites (possibly linked to ganglioside sequestration) as well as formation of neurofibrillary tangles (NFTs) (possibly linked to dysregulation of cholesterol metabolism). Other features of cellular pathology in NPC disease include fragmentation of the Golgi apparatus and neuroaxonal dystrophy, though reasons for these changes remain largely unknown. As the disease progresses, neurodegeneration is also apparent for neurons in some brain regions, particularly Purkinje cells of the cerebellum, but the basis of this selective neuronal vulnerability is unknown. The NPC1 protein is evolutionarily conserved with homologues reported in yeast to humans; NPC2 is reported in C. elegans to humans. While neurons in mammalian models of NPC1 and NPC2 diseases exhibit many changes that are remarkably similar to those in humans (e.g., endosomal/lysosomal storage, Golgi fragmentation, neuroaxonal dystrophy, neurodegeneration), a reduced degree of ectopic dendritogenesis and an absence of NFTs in these species suggest important differences in the way lower mammalian neurons respond to NPC1/NPC2 loss of function.  相似文献   

13.
The protein NDRG2 (N-myc downregulated gene 2) is expressed in astrocytes. We show here that NDRG2 is located in the cytosol of protoplasmic and fibrous astrocytes throughout the mammalian brain, including Bergmann glia as observed in mouse, rat, tree shrew, marmoset and human. NDRG2 immunoreactivity is detectable in the astrocytic cell bodies and excrescencies including fine distal processes. Glutamatergic and GABAergic nerve terminals are associated with NDRG2 immunopositive astrocytic processes. Müller glia in the retina displays no NDRG2 immunoreactivity. NDRG2 positive astrocytes are more abundant and more evenly distributed in the brain than GFAP (glial fibrillary acidic protein) immunoreactive cells. Some regions with very little GFAP such as the caudate nucleus show pronounced NDRG2 immunoreactivity. In white matter areas, NDRG2 is less strong than GFAP labeling. Most NDRG2 positive somata are immunoreactive for S100ß but not all S100ß cells express NDRG2. NDRG2 positive astrocytes do not express nestin and NG2 (chondroitin sulfate proteoglycan 4). The localization of NDRG2 overlaps only partially with that of aquaporin 4, the membrane-bound water channel that is concentrated in the astrocytic endfeet. Reactive astrocytes at a cortical lesion display very little NDRG2, which indicates that expression of the protein is reduced in reactive astrocytes. In conclusion, our data show that NDRG2 is a specific marker for a large population of mature, non-reactive brain astrocytes. Visualization of NDRG2 immunoreactive structures may serve as a reliable tool for quantitative studies on numbers of astrocytes in distinct brain regions and for high-resolution microscopy studies on distal astrocytic processes.  相似文献   

14.
The octapeptide FLFQPQRF-NH2 or neuropeptide FF ('F8Famide'; FMRFamide-like peptide'; 'morphine-modulating peptide') has been isolated from the bovine brain. In this study, the ultrastructural localization of neuropeptide FF-like immunoreactivity was examined with pre-embedding immuno-electron microscopy in the nucleus of the solitary tract and in the posterior lobe of the pituitary gland of an adult rat. Neuropeptide FF-like immunoreactivity was detected only in neuronal structures of the medial and commissural nuclei of the solitary tract and in the neurohypophysis. In the medulla, the peroxidase-antiperoxidase reaction product was localized in large (100 nm) dense-cored vesicles and in the cytoplasm of the neuronal perikarya, dendrites and axon terminals. In the labeled terminals, small (50 nm) clear vesicles rimmed with the peroxidase-antiperoxidase reaction product were seen. Synaptic contacts of labeled perikarya and dendrites with unlabeled axon terminals were observed. Labeled axon terminals formed contacts with unlabeled dendrites and perikarya. In the posterior lobe of the pituitary gland, neuropeptide FF-like immunoreactivity was localized in nerve terminals frequently associated with blood vessels. The results suggest that neuropeptide FF-like peptides are localized exclusively in neuronal structures and that they are synthesized in cell somata and released from axon terminals. In the brain, neuropeptide FF-like peptides may act as neuromodulators involved in the regulation of autonomic functions. The localization of neuropeptide FF-like immunoreactivity in the neurohypophysis suggests endocrine regulatory functions of these peptides.  相似文献   

15.
Reactive astrocytes (RA) secrete lipocalin-2 (LCN2) glycoprotein that regulates diverse cellular processes including cell death/survival, inflammation, iron delivery and cell differentiation. Elevated levels of LCN2 are considered as a biomarker of brain injury, however, the underlying regulatory mechanisms of its expression and release are not well understood. In this study, we investigated the role of astrocytic Na+/H+ exchanger 1 (NHE1) in regulating reactive astrocyte LCN2 secretion and neurodegeneration after stroke. Astrocyte specific deletion of Nhe1 in Gfap-CreER+/;Nhe1f/f mice reduced astrogliosis and astrocytic LCN2 and GFAP expression, which was associated with reduced loss of NeuN+ and GRP78+ neurons in stroke brains. In vitro ischemia in astrocyte cultures triggered a significant increase of secreted LCN2 in astrocytic exosomes, which caused neuronal cell death and neurodegeneration. Inhibition of NHE1 activity during in vitro ischemia with its potent inhibitor HOE642 significantly reduced astrocytic LCN2+ exosome secretion. In elucidating the cellular mechanisms, we found that stroke triggered activation of NADPH oxidase (NOX)-NF-κB signaling and ROS-mediated LCN2 expression. Inhibition of astrocytic NHE1 activity attenuated NOX signaling and LCN2-mediated neuronal apoptosis and neurite degeneration. Our findings demonstrate for the first time that RA use NOX signaling to stimulate LCN2 expression and secretion. Blocking astrocytic NHE1 activity is beneficial to reduce LCN2-mediated neurotoxicity after stroke.Subject terms: Cell death in the nervous system, Astrocyte  相似文献   

16.
Niemann-Pick type C (NPC) disease is characterized by an accumulation of cholesterol and other lipids in the lysosomal compartment. In this report, we use subcellular fractionation and microscopy to determine the localization of the murine Niemann-Pick C1 (NPC1) protein. Fractionation of mouse liver homogenates indicates that some NPC1 cosediments with lysosome-associated membrane protein 1 (LAMP1)-containing membranes. However, a significant amount of NPC1 is also found in membranes that do not contain LAMP1. Moreover, fractionation of liver membranes and fibroblasts in the presence of a nonionic detergent showed that a fraction of NPC1 cosediments with caveolin-1 in rafts. Immunofluorescence microscopy of cultured mouse fibroblasts showed that NPC1 is found in two morphologically distinct structures. The first population is characterized by large punctate structures that do not colocalize with major organelle protein markers, but do colocalize with filipin and a small fraction of caveolin-1. Examination of these large NPC1-containing compartments using electron microscopy shows that these structures contain extensive internal membranes. The second population is represented by smaller, more diffuse structures, a fraction of which colocalize with LAMP1-positive compartments. Incubation of fibroblasts with low density lipoprotein (LDL) increases colocalization of NPC1 with LAMP1-containing compartments. This colocalization can be further enhanced by treating fibroblasts with progesterone or chloroquine. The results indicate that NPC1 is associated with an unique vesicular compartment enriched with cholesterol and containing caveolin-1, and that NPC1 cycles to LAMP1-positive compartments, presumably to facilitate the processing of LDL-derived cholesterol.  相似文献   

17.
Koh CH  Cheung NS 《Cellular signalling》2006,18(11):1844-1853
Neuronal cell death can occur by means of either necrosis or apoptosis. Both necrosis and apoptosis are generally believed to be distinct mechanisms of cell death with different characteristic features distinguished on the basis of their morphological and biochemical properties. The brain is the most cholesterol-rich organ in the body but not much is known about the mechanisms that regulate cholesterol homeostasis in the brain. Recently, several clinical and biochemical studies suggest that cholesterol imbalance in the brain may be a risk factor related to the development of neurological disorders such as Niemann-Pick disease type C (NPC) and Alzheimer's disease (AD). NPC is a fatal juvenile neurodegenerative disorder characterized by premature neuronal death and somatically altered cholesterol metabolism. The main biochemical manifestation in NPC is elevated intracellular accumulation of free cholesterol caused by a genetic deficit in cholesterol trafficking. The pharmacological agent, U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), is a well-known class-2 amphiphile which inhibits cholesterol transport. Cells treated with this agent accumulate intracellular cholesterol to massive levels, similar to that observed in cells from NPC patients. NPC and AD have some pathological similarities which may share a common underlying cause. AD is one of the most common types of dementia affecting the elderly. However, the molecular mechanisms of neurodegeneration in NPC and AD are largely unknown. This review provides a consolidation of work done using U18666A in the past half century and focuses on the implications of our research findings on the mechanism of U18666A-mediated neuronal apoptosis in primary cortical neurons, which may provide an insight to elucidate the mechanisms of neurodegenerative diseases, particularly NPC and AD, where apoptosis might occur through a similar mechanism.  相似文献   

18.
Niemann-Pick disease, type C (NP-C), often associated with Niemann-Pick disease, type C1 (NPC1) mutations, is a cholesterol-storage disorder characterized by cellular lipid accumulation, neurodegeneration, and reduced steroid production. To study NPC1 function in vivo, we cloned zebrafish npc1 and analyzed its gene expression and activity by reducing Npc1 protein with morpholino (MO)-oligonucleotides. Filipin staining in npc1-morphant cells was punctate, suggesting abnormal accumulation of cholesterol. Developmentally, reducing Npc1 did not disrupt early cell fate or survival; however, early morphogenetic movements were delayed, and the actin cytoskeleton network was abnormal. MO-induced defects were rescued with ectopic expression of mouse NPC1, demonstrating functional gene conservation, and by treatments with steroids pregnenolone or dexamethasone, suggesting that reduced steroidogenesis contributed to abnormal cell movements. Cell death was found in anterior tissues of npc1 morphants at later stages, consistent with findings in mammals. Collectively, these studies show that npc1 is required early for proper cell movement and cholesterol localization and later for cell survival.  相似文献   

19.
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 -/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 -/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 -/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.  相似文献   

20.
Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC) disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK) and murine double minute (Mdm2) E3 ligase. Growth cone collapse induced by genetic (npc1−/−) or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK)-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1−/− mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号