首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalized model of social and biological contagion   总被引:2,自引:0,他引:2  
We present a model of contagion that unifies and generalizes existing models of the spread of social influences and microorganismal infections. Our model incorporates individual memory of exposure to a contagious entity (e.g. a rumor or disease), variable magnitudes of exposure (dose sizes), and heterogeneity in the susceptibility of individuals. Through analysis and simulation, we examine in detail the case where individuals may recover from an infection and then immediately become susceptible again (analogous to the so-called SIS model). We identify three basic classes of contagion models which we call epidemic threshold, vanishing critical mass, and critical mass classes, where each class of models corresponds to different strategies for prevention or facilitation. We find that the conditions for a particular contagion model to belong to one of the these three classes depend only on memory length and the probabilities of being infected by one and two exposures, respectively. These parameters are in principle measurable for real contagious influences or entities, thus yielding empirical implications for our model. We also study the case where individuals attain permanent immunity once recovered, finding that epidemics inevitably die out but may be surprisingly persistent when individuals possess memory.  相似文献   

2.
In this paper, we propose control strategies for multigroup epidemic models. We use compartmental \({\textit{SIRS}}\) models to study the dynamics of n host groups sharing the same source of infection in addition to the transmission among members of the same group. In particular, we consider a model for infectious diseases with free-living pathogens in the environment and a metapopulation model with a central patch. We give the detailed derivation of the target reproduction number under three public health interventions and provide the corresponding biological insights. Moreover, using the next-generation approach, we calculate the basic reproduction numbers associated with subsystems of our models and determine algebraic connections to the target reproduction number of the complete model. The analysis presented here illustrates that understanding the topological structure of the infection process and partitioning it into simple cycles is useful to design and evaluate the control strategies.  相似文献   

3.
Multi-species compartment epidemic models, such as the multi-species susceptible–infectious–recovered (SIR) model, are extensions of the classic SIR models, which are used to explore the transient dynamics of pathogens that infect multiple hosts in a large population. In this article, we propose a dynamical Bayesian hierarchical SIR (HSIR) model, to capture the stochastic or random nature of an epidemic process in a multi-species SIR (with recovered becoming susceptible again) dynamical setting, under hidden mass balance constraints. We call this a Bayesian hierarchical multi-species SIR (MSIRB) model. Different from a classic multi-species SIR model (which we call MSIRC), our approach imposes mass balance on the underlying true counts rather than, improperly, on the noisy observations. Moreover, the MSIRB model can capture the discrete nature of, as well as uncertainties in, the epidemic process.  相似文献   

4.
Classical epidemic theory focuses on directly transmitted pathogens, but many pathogens are instead transmitted when hosts encounter infectious particles. Theory has shown that for such diseases pathogen persistence time in the environment can strongly affect disease dynamics, but estimates of persistence time, and consequently tests of the theory, are extremely rare. We consider the consequences of persistence time for the dynamics of the gypsy moth baculovirus, a pathogen transmitted when larvae consume foliage contaminated with particles released from infectious cadavers. Using field-transmission experiments, we are able to estimate persistence time under natural conditions, and inserting our estimates into a standard epidemic model suggests that epidemics are often terminated by a combination of pupation and burnout rather than by burnout alone, as predicted by theory. Extending our models to allow for multiple generations, and including environmental transmission over the winter, suggests that the virus may survive over the long term even in the absence of complex persistence mechanisms, such as environmental reservoirs or covert infections. Our work suggests that estimates of persistence times can lead to a deeper understanding of environmentally transmitted pathogens and illustrates the usefulness of experiments that are closely tied to mathematical models.  相似文献   

5.
We analyze long-term evolutionary dynamics in a large class of life history models. The model family is characterized by discrete-time population dynamics and a finite number of individual states such that the life cycle can be described in terms of a population projection matrix. We allow an arbitrary number of demographic parameters to be subject to density-dependent population regulation and two or more demographic parameters to be subject to evolutionary change. Our aim is to identify structural features of life cycles and modes of population regulation that correspond to specific evolutionary dynamics. Our derivations are based on a fitness proxy that is an algebraically simple function of loops within the life cycle. This allows us to phrase the results in terms of properties of such loops which are readily interpreted biologically. The following results could be obtained. First, we give sufficient conditions for the existence of optimisation principles in models with an arbitrary number of evolving traits. These models are then classified with respect to their appropriate optimisation principle. Second, under the assumption of just two evolving traits we identify structural features of the life cycle that determine whether equilibria of the monomorphic adaptive dynamics (evolutionarily singular points) correspond to fitness minima or maxima. Third, for one class of frequency-dependent models, where optimisation is not possible, we present sufficient conditions that allow classifying singular points in terms of the curvature of the trade-off curve. Throughout the article we illustrate the utility of our framework with a variety of examples.  相似文献   

6.
A nonautonomous version of the SIR epidemic model in Ackleh and Allen (2003) is considered, for competition of $n$ infection strains in a host population. The model assumes total cross immunity, mass action incidence, density-dependent host mortality and disease-induced mortality. Sufficient conditions for the robust uniform persistence of the total population, as well as of the susceptible and infected subpopulations, are given. The first two forms of persistence depend entirely on the rate at which the population grows from the extinction state, respectively the rate at which the disease is vertically transmitted to offspring. We also discuss the competitive exclusion among the $n$ infection strains, namely when a single infection strain survives and all the others go extinct. Numerical simulations are also presented, to account for the situations not covered by the analytical results. These simulations suggest that the nonautonomous nature of the model combined with the disease induced mortality allow for many strains to coexist. The theoretical approach developed here is general enough to apply to other nonautonomous epidemic models.  相似文献   

7.
Gas–liquid mass transfer is often rate‐limiting in laboratory and industrial cultures of aerobic or autotrophic organisms. The volumetric mass transfer coefficient kLa is a crucial characteristic for comparing, optimizing, and upscaling mass transfer efficiency of bioreactors. Reliable dynamic models and resulting methods for parameter identification are needed for quantitative modeling of microbial growth dynamics. We describe a laboratory‐scale stirred tank reactor (STR) with a highly efficient aeration system (kLa ≈ 570 h?1). The reactor can sustain yeast culture with high cell density and high oxygen uptake rate, leading to a significant drop in gas concentration from inflow to outflow (by 21%). Standard models fail to predict the observed mass transfer dynamics and to identify kLa correctly. In order to capture the concentration gradient in the gas phase, we refine a standard ordinary differential equation (ODE) model and obtain a system of partial integro‐differential equations (PIDE), for which we derive an approximate analytical solution. Specific reactor configurations, in particular a relatively short bubble residence time, allow a quasi steady‐state approximation of the PIDE system by a simpler ODE model which still accounts for the concentration gradient. Moreover, we perform an appropriate scaling of all variables and parameters. In particular, we introduce the dimensionless overall efficiency κ, which is more informative than kLa since it combines the effects of gas inflow, exchange, and solution. Current standard models of mass transfer in laboratory‐scale aerated STRs neglect the gradient in the gas concentration, which arises from highly efficient bubbling systems and high cellular exchange rates. The resulting error in the identification of κ (and hence kLa) increases dramatically with increasing mass transfer efficiency. Notably, the error differs between cell‐free and culture‐based methods of parameter identification, potentially confounding the determination of the “biological enhancement” of mass transfer. Our new model provides an improved theoretical framework that can be readily applied to aerated bioreactors in research and biotechnology. Biotechnol. Bioeng. 2012; 109: 2997–3006. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
In this paper, we report some results on persistence in two structured population models: a chronic- age-structured epidemic model and an age-duration-structured epidemic model. Regarding these models, we observe that the system is uniformly strongly persistent, which means, roughly speaking, that the proportion of infected subpopulation is bounded away from 0 and the bound does not depend on the initial data after a sufficient long time, if the basic reproduction ratio is larger than one. We derive this by adopting Thieme's technique, which requires some conditions about positivity and compactness. Although the compactness condition is rather difficult to show in general infinite-dimensional function spaces, we can apply Fréchet–Kolmogorov L 1-compactness criteria to our models. The two examples that we study illuminate a useful method to show persistence in structured population models.  相似文献   

9.
Timely, accurate, and comparative data on human mobility is of paramount importance for epidemic preparedness and response, but generally not available or easily accessible. Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents a powerful source of information on human movements at an unprecedented scale. In this work, we investigate the potential benefits of harnessing aggregated CDR-derived mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when compared to other traditional data sources. To simulate the spread of ZIKV at sub-national level in Colombia, we employ a stochastic metapopulation epidemic model for vector-borne diseases. Our model integrates detailed data on the key drivers of ZIKV spread, including the spatial heterogeneity of the mosquito abundance, and the exposure of the population to the virus due to environmental and socio-economic factors. Given the same modelling settings (i.e. initial conditions and epidemiological parameters), we perform in-silico simulations for each mobility network and assess their ability in reproducing the local outbreak as reported by the official surveillance data. We assess the performance of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and sub-nationally. Our model estimates are strongly correlated with the surveillance data at the country level (Pearson’s r = 0.92 for the CDR-informed network). Moreover, we found strong performance of the model estimates generated by the CDR-informed mobility networks in reproducing the local outbreak observed at the sub-national level. Compared to the CDR-informed networks, the performance of the other mobility networks is either comparatively similar or substantially lower, with no added value in predicting the local epidemic. This suggests that mobile phone data captures a better picture of human mobility patterns. This work contributes to the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with appropriate data protection and privacy safeguards, can be used for social impact applications and humanitarian action.  相似文献   

10.
The selection of the most appropriate model for an ecological risk assessment depends on the application, the data and resources available, the knowledge base of the assessor, the relevant endpoints, and the extent to which the model deals with uncertainty. Since ecological systems are highly variable and our knowledge of model input parameters is uncertain, it is important that models include treatments of uncertainty and variability, and that results are reported in this light. In this paper we discuss treatments of variation and uncertainty in a variety of population models. In ecological risk assessments, the risk relates to the probability of an adverse event in the context of environmental variation. Uncertainty relates to ignorance about parameter values, e.g., measurement error and systematic error. An assessment of the full distribution of risks, under variability and parameter uncertainty, will give the most comprehensive and flexible endpoint. In this paper we present the rationale behind probabilistic risk assessment, identify the sources of uncertainty relevant for risk assessment and provide an overview of a range of population models. While all of the models reviewed have some utility in ecology, some have more comprehensive treatments of uncertainty than others. We identify the models that allow probabilistic assessments and sensitivity analyses, and we offer recommendations for further developments that aim towards more comprehensive and reliable ecological risk assessments for populations.  相似文献   

11.
Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks.  相似文献   

12.
Two closely related stochastic models of parasitic infection are investigated: a non-linear model, where density dependent constraints are included, and a linear model appropriate to the initial behaviour of an epidemic. Host-mortality is included in both models. These models are appropriate to transmission between homogeneously mixing hosts, where the amount of infection which is transferred from one host to another at a single contact depends on the number of parasites in the infecting host. In both models, the basic reproduction ratio R0 can be defined to be the lifetime expected number of offspring of an adult parasite under ideal conditions, but it does not necessarily contain the information needed to separate growth from extinction of infection. In fact we find three regions for a certain parameter where different combinations of parameters determine the behavior of the models. The proofs involve martingale and coupling methods.  相似文献   

13.
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models.  相似文献   

14.
The survival probability of an individual may be limited by density-dependent mechanisms and by environmental stochasticity, but can also be modified by individual characteristics. In our study, we investigated over-winter survival of subadults of an enclosed European rabbit Oryctolagus cuniculus population in a temperate zone habitat over the period 1992–2002. We: (1) selected for appropriate models to explain individual variation in over-winter survival and the animals autumn body mass, the latter was used as a measure of the individual pre-winter body condition; and (2) aimed to compare the sensitivity of the target variables on the realised variation of the factors considered. Model selection based on information theory revealed that individual over-winter survival was best explained by the combination of autumn body mass, winter temperature, population density and sex, where the probability of survival was higher in females than in males. According to this model, the probability of survival reacted most sensitively to variation in the autumn body mass and in winter temperature. Individual autumn body mass was best explained by the combination of the date of birth, population density, and weather conditions by means of the percentage of rainy days during the first 2 months after the animals had emerged above ground, where the autumn body mass was negatively related to the percentage of rainy days. The chosen model suggested that the autumn body mass reacted most sensitively to variation in the date of birth. Combining these models, we found that weather conditions during two different periods of time as well as population density, sex and the date of birth operated together to determine the probability of over-winter survival. In particular, the study points out the high impact of environmental stochasticity on over-winter survival: (1) by direct effects of winter temperature conditions, and (2) by the indirect action of weather conditions to which the animals were exposed during the early period of juvenile development.  相似文献   

15.
In this paper we consider an age-duration-structured population model for HIV infection in a homosexual community. First we investigate the invasion problem to establish the basic reproduction ratio R(0) for the HIV/AIDS epidemic by which we can state the threshold criteria: The disease can invade into the completely susceptible population if R(0)>1, whereas it cannot if R(0)<1. Subsequently, we examine existence and uniqueness of endemic steady states. We will show sufficient conditions for a backward or a forward bifurcation to occur when the basic reproduction ratio crosses unity. That is, in contrast with classical epidemic models, for our HIV model there could exist multiple endemic steady states even if R(0) is less than one. Finally, we show sufficient conditions for the local stability of the endemic steady states.  相似文献   

16.

Background

Women having experienced several consecutive failing IVF cycles constitute a critical and particular subset of patients, for which growing perception of irremediable failure, increasing costs and IVF treatment related risks necessitate appropriate decision making when starting or not a new cycle. Predicting chances of LB might constitute a useful tool for discussion between the patient and the clinician. Our essential objective was to dispose of a simple and accurate prediction model for use in routine medical practice. The currently available predictive models applicable to general populations cannot be considered as accurate enough for this purpose.

Methods

Patients with at least four consecutive Failing cycles (CFCs) were selected. We constructed a predictive model of LB occurrence during the last cycle, by using a stepwise logistic regression, using all the baseline patient characteristics and intermediate stage variables during the four first cycles.

Results

On as set of 151 patients, we identified five determinant predictors: the number of previous cycles with at least one gestational sac (NGS), the mean number of good-quality embryos, age, male infertility (MI) aetiology and basal FSH. Our model was characterized by a much higher discrimination as the existing models (C-statistics=0.76), and an excellent calibration.

Conclusions

Couples having experienced multiple IVF failures need precise and appropriate information to decide to resume or interrupt their fertility project. Our essential objective was to dispose of a simple and accurate prediction model to allow a routine practice use. Our model is adapted to this purpose: It is very simple, combines five easily collected variables in a short calculation; it is more accurate than existing models, with a fair discrimination and a well calibrated prediction.  相似文献   

17.
The author extends the classical, stochastic, Susceptible-Infected-Removed (SIR) epidemic model to allow for disease transmission through a dynamic network of partnerships. A new method of analysis allows for a fairly complete understanding of the dynamics of the system for small and large time. The key insight is to analyze the model by tracking the configurations of all possible dyads, rather than individuals. For large populations, the initial dynamics are approximated by a branching process whose threshold for growth determines the epidemic threshold, R 0, and whose growth rate, , determines the rate at which the number of cases increases. The fraction of the population that is ever infected, , is shown to bear the same relationship to R 0 as in models without partnerships. Explicit formulas for these three fundamental quantities are obtained for the simplest version of the model, in which the population is treated as homogeneous, and all transitions are Markov. The formulas allow a modeler to determine the error introduced by the usual assumption of instantaneous contacts for any particular set of biological and sociological parameters. The model and the formulas are then generalized to allow for non-Markov partnership dynamics, non-uniform contact rates within partnerships, and variable infectivity. The model and the method of analysis could also be further generalized to allow for demographic effects, recurrent susceptibility and heterogeneous populations, using the same strategies that have been developed for models without partnerships.  相似文献   

18.
Understanding how an organism develops into a fully functioning adult from a mass of undifferentiated cells may reveal different strategies that allow the organism to survive under limiting conditions. Here, we review an analytical model for characterizing quantitative trait loci (QTLs) that underlie variation in growth trajectories and developmental timing. This model, called functional mapping, incorporates fundamental principles behind biological processes or networks that are bridged with mathematical functions into a statistical mapping framework. Functional mapping estimates parameters that determine the shape and function of a particular biological process, thus providing a flexible platform to test biologically meaningful hypotheses regarding the complex relationships between gene action and development.  相似文献   

19.
An integral equation model of a smallpox epidemic is proposed. The model structures the incidence of infection among the household, the workplace, the wider community and a health-care facility; and incorporates a finite incubation period and plausible infectivity functions. Linearisation of the model is appropriate for small epidemics, and enables analytic expressions to be derived for the basic reproduction number and the size of the epidemic. The effects of control interventions (vaccination, isolation, quarantine and public education) are explored for a smallpox epidemic following an imported case. It is found that the rapid identification and isolation of cases, the quarantine of affected households and a public education campaign to reduce contact would be capable of bringing an epidemic under control. This could be used in conjunction with the vaccination of healthcare workers and contacts. Our results suggest that prior mass vaccination would be an inefficient method of containing an outbreak.  相似文献   

20.
Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson’s and Huntington’s diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号