首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lateral intersegmental muscles of pharate adult tobacco hawkmoths (Manduca sexta), exhibited electrical coupling across the segmental boundary. The degree of electrical coupling was constant throughout adult development. These muscle fibres did not appear to be dye coupled in that neither cobalt ions nor the flourescent dye Lucifer Yellow CH passed between cells. Electrical coupling was unaffected by cellular acidification with CO2. Data are presented which suggest that this electrical coupling may be through the extracellular space rather than some membrane specialization. It is further speculated that many invertebrates may show this form of electrical coupling due to the metameric architecture of certain skeletal muscles.  相似文献   

2.

Background

The homeobox gene Prox1 is required for lens, retina, pancreas, liver, and lymphatic vasculature development and is expressed in inner ear supporting cells and neurons.

Methodology/Principal Findings

We have investigated the role of Prox1 in the developing mouse ear taking advantage of available standard and conditional Prox1 mutant mouse strains using Tg(Pax2-Cre) and Tg(Nes-Cre). A severe reduction in the size of the canal cristae but not of other vestibular organs or the cochlea was identified in the E18.5 Prox1Flox/Flox; Tg(Pax2-Cre) mutant ear. In these mutant embryos, hair cell differentiated; however, their distribution pattern was slightly disorganized in the cochlea where the growth of type II nerve fibers to outer hair cells along Prox1 expressing supporting cells was severely disrupted. In the case of Nestin-Cre, we found that newborn Prox1Flox/Flox; Tg(Nestin-Cre) exhibit only a disorganized innervation of outer hair cells despite apparently normal cellular differentiation of the organ of Corti, suggesting a cell-autonomous function of Prox1 in neurons.

Conclusions/Significance

These results identify a dual role of Prox1 during inner ear development; growth of the canal cristae and fiber guidance of Type II fibers along supporting cells in the cochlea.  相似文献   

3.
Aminoglycoside antibiotics such as gentamicin could cause ototoxicity in mammalians, by inducing oxidative stress and apoptosis in sensory hair cells of the cochlea. Sodium hydrosulfide (NaHS) is reported to alleviate oxidative stress and apoptosis, but its role in protecting aminoglycoside-induced hearing loss is unclear. In this study, we investigated the anti-oxidant and anti-apoptosis effect of NaHS in in vitro cultured House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and isolated mouse cochlea. Results from cultured HEI-OC1 cells and cochlea consistently indicated that NaHS exhibited protective effects from gentamicin-induced ototoxicity, evident by maintained cell viability, hair cell number and cochlear morphology, reduced reactive oxygen species production and mitochondrial depolarization, as well as apoptosis activation of the intrinsic pathway. Moreover, in the isolated cochlear culture, NaHS was also demonstrated to protect the explant from gentamicin-induced mechanotransduction loss. Our study using multiple in vitro models revealed for the first time, the potential of NaHS as a therapeutic agent in protecting against aminoglycoside-induced hearing loss.  相似文献   

4.
Members of the neurotrophin gene family and their high-affinity Trk receptors control innervation of the cochlea during embryonic development. Lack of neurotrophin signalling in the cochlea has been well documented for early postnatal animals, resulting in a loss of cochlear sensory neurones and a region-specific reduction of target innervation along the tonotopic axis. However, how reduced neurotrophin signalling affects the innervation of the mature cochlea is currently unknown. Here, we have analysed the consequences of a lack of the TrkB receptor and its ligand, the neurotrophin brain-derived neurotrophic factor (Bdnf), in the late postnatal or adult cochlea using mouse mutants. During early postnatal development, mutant animals show a lack of afferent innervation of outer hair cells in the apical part of the cochlea, whereas nerve fibres in the basal part are maintained. Strikingly, this phenotype is reversed during subsequent maturation of the cochlea, which results in a normal pattern of outer hair cell innervation in the apex and loss of nerve fibres at the base in adult mutants. Measurements of auditory brain stem responses of these mice revealed a significant hearing loss. The observed innervation patterns correlate with opposing gradients of Bdnf and Nt3 expression in cochlear neurones along the tonotopic axis. Thus, the reshaping of innervation may be controlled by autocrine signalling between neurotrophins and their receptors in cochlear neurones. Our results indicate a substantial potential for re-innervation processes in the mature cochlea, which may also be of relevance for treatment of hearing loss in humans.  相似文献   

5.
The mammalian inner ear has 6 distinct sensory epithelia: 3 cristae in the ampullae of the semicircular canals; maculae in the utricle and saccule; and the organ of Corti in the coiled cochlea. The cristae and maculae contain vestibular hair cells that transduce mechanical stimuli to subserve the special sense of balance, while auditory hair cells in the organ of Corti are the primary transducers for hearing 1. Cell fate specification in these sensory epithelia and morphogenesis of the semicircular canals and cochlea take place during the second week of gestation in the mouse and are largely completed before birth 2,3. Developmental studies of the mouse inner ear are routinely conducted by harvesting transgenic embryos at different embryonic or postnatal stages to gain insight into the molecular basis of cellular and/or morphological phenotypes 4,5. We hypothesize that gene transfer to the developing mouse inner ear in utero in the context of gain- and loss-of-function studies represents a complimentary approach to traditional mouse transgenesis for the interrogation of the genetic mechanisms underlying mammalian inner ear development6.The experimental paradigm to conduct gene misexpression studies in the developing mouse inner ear demonstrated here resolves into three general steps: 1) ventral laparotomy; 2) transuterine microinjection; and 3) in vivo electroporation. Ventral laparotomy is a mouse survival surgical technique that permits externalization of the uterus to gain experimental access to the implanted embryos7. Transuterine microinjection is the use of beveled, glass capillary micropipettes to introduce expression plasmid into the lumen of the otic vesicle or otocyst. In vivo electroporation is the application of square wave, direct current pulses to drive expression plasmid into progenitor cells8-10. We previously described this electroporation-based gene transfer technique and included detailed notes on each step of the protocol11. Mouse experimental embryological techniques can be difficult to learn from prose and still images alone. In the present work, we demonstrate the 3 steps in the gene transfer procedure. Most critically, we deploy digital video microscopy to show precisely how to: 1) identify embryo orientation in utero; 2) reorient embryos for targeting injections to the otocyst; 3) microinject DNA mixed with tracer dye solution into the otocyst at embryonic days 11.5 and 12.5; 4) electroporate the injected otocyst; and 5) label electroporated embryos for postnatal selection at birth. We provide representative examples of successfully transfected inner ears; a pictorial guide to the most common causes of otocyst mistargeting; discuss how to avoid common methodological errors; and present guidelines for writing an in utero gene transfer animal care protocol.  相似文献   

6.
Adsorption of the vital dye Congo red suppresses swarming of Azospirillum brasilense in a semiliquid medium, and the bacteria become able to spread with the formation of microcolonies. By using direct and stereoscopic light microscopy, the patterns of the front of Azospirillum spreading in a semiliquid medium containing the dye were analyzed. It was found that in a medium with Congo red, small motile colonies were formed among the individual cells, and once formed, they left the boundaries of the swarming front. The microcolonies produced by azospirilla in the presence of the dye were ordered bacterial structures, rather than random cell aggregates. Transmission electron microscopy revealed that the cells grown without the dye had polar flagella, whereas the cells from the medium with Congo red had no flagella and were covered with a layer of fibrillike material. Immunochemical data for the cell surface changes resulting from interaction with the dye make it possible to consider Azospirillum lipopolysaccharide as a probable Congo red receptor.  相似文献   

7.
Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In a conditional hair cell Rb1 knockout mouse, Pou4f3-Cre-pRb™/™, pRb™/™ utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of pRb™/™ cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of pRb™/™ cochlea and utricle. The comparative analysis shows that the core pathway shared between pRb™/™ cochlea and utricle is centered on e2F, the key pathway that mediates pRb function. A majority of differentially expressed genes and enriched pathways are not shared but uniquely associated with pRb™/™ cochlea or utricle. In pRb™/™ cochlea, pathways involved in early inner ear development such as Wnt/β-catenin and Notch were enriched, whereas pathways involved in proliferation and survival are enriched in pRb™/™ utricle. Clustering analysis showed that the pRb™/™ inner ear has characteristics of a younger control inner ear, an indication of delayed differentiation. We created a transgenic mouse model (ER-Cre-pRbflox/flox) in which Rb1 can be acutely deleted postnatally. Acute Rb1 deletion in the adult mouse fails to induce proliferation or cell death in inner ear, strongly indicating that Rb1 loss in these postmitotic tissues can be effectively compensated for, or that pRb-mediated changes in the postmitotic compartment result in events that are functionally irreversible once enacted. This study thus supports the concept that pRb-regulated pathways relevant to hair cell development, encompassing proliferation, differentiation and survival, act predominantly during early development.Key words: hair cells, retinoblastoma, Rb1, proliferation, regeneration, apoptosis, inner ear  相似文献   

8.
In mammals, auditory hair cells are generated only during embryonic development and loss or damage to hair cells is permanent. However, in non-mammalian vertebrate species, such as birds, neighboring glia-like supporting cells regenerate auditory hair cells by both mitotic and non-mitotic mechanisms. Based on work in intact cochlear tissue, it is thought that Notch signaling might restrict supporting cell plasticity in the mammalian cochlea. However, it is unresolved how Notch signaling functions in the hair cell-damaged cochlea and the molecular and cellular changes induced in supporting cells in response to hair cell trauma are poorly understood. Here we show that gentamicin-induced hair cell loss in early postnatal mouse cochlear tissue induces rapid morphological changes in supporting cells, which facilitate the sealing of gaps left by dying hair cells. Moreover, we provide evidence that Notch signaling is active in the hair cell damaged cochlea and identify Hes1, Hey1, Hey2, HeyL, and Sox2 as targets and potential Notch effectors of this hair cell-independent mechanism of Notch signaling. Using Cre/loxP based labeling system we demonstrate that inhibition of Notch signaling with a γ- secretase inhibitor (GSI) results in the trans-differentiation of supporting cells into hair cell-like cells. Moreover, we show that these hair cell-like cells, generated by supporting cells have molecular, cellular, and basic electrophysiological properties similar to immature hair cells rather than supporting cells. Lastly, we show that the vast majority of these newly generated hair cell-like cells express the outer hair cell specific motor protein prestin.  相似文献   

9.
Canavan Disease (CD) is a leukodystrophy caused by homozygous null mutations in the gene encoding aspartoacylase (ASPA). ASPA-deficiency is characterized by severe psychomotor retardation, and excessive levels of the ASPA substrate N-acetylaspartate (NAA). ASPA is an oligodendrocyte marker and it is believed that CD has a central etiology. However, ASPA is also expressed by Schwann cells and ASPA-deficiency in the periphery might therefore contribute to the complex CD pathology. In this study, we assessed peripheral and central auditory function in the AspalacZ/lacZ rodent model of CD using auditory brainstem response (ABR). Increased ABR thresholds and the virtual loss of waveform peaks 4 and 5 from AspalacZ/lacZ mice, indicated altered central auditory processing in mutant mice compared with Aspawt/wt controls and altered central auditory processing. Analysis of ABR latencies recorded from AspalacZ/lacZ mice revealed that the speed of nerve conduction was unchanged in the peripheral part of the auditory pathway, and impaired in the CNS. Histological analyses confirmed that ASPA was expressed in oligodendrocytes and Schwann cells of the auditory system. In keeping with our physiological results, the cellular organization of the cochlea, including the organ of Corti, was preserved and the spiral ganglion nerve fibres were normal in ASPA-deficient mice. In contrast, we detected substantial hypomyelination in the central auditory system of AspalacZ/lacZ mice. In summary, our data suggest that the lack of ASPA in the CNS is responsible for the observed hearing deficits, while ASPA-deficiency in the cochlear nerve fibres is tolerated both morphologically and functionally.  相似文献   

10.
The toxicity of cationic fluorescent dye, rhodamine 123, towards a number of independently established cell lines from three different species, namely human, mouse, and Chinese hamster, has been examined. All of the cell lines from any one species that were examined were found to exhibit similar sensitivities towards rhodamine 123 and no appreciable differences were observed between the normal and transformed cell types. However, in comparison to the cells of human origin, mouse and Chinese hamster cell lines exhibited about 10-fold and 70-fold higher resistance, respectively, and these differences appeared to be species related. In contrast to rhodamine 123, no differences in relative toxicities for these cell lines were observed for the structurally related neutral dye, rhodamine B. Fluorescence studies with rhodamine 123 show that in comparison to mouse and Chinese hamster cells, the more sensitive human cells show much higher uptake/binding of the drug, and a good correlation was seen in these studies between the extent of dye uptake/binding and the relative sensitivities of cell lines to rhodamine 123. These results provide evidence that the observed species-related differences in cellular toxicities are due to differences in the cellular uptake/binding of the dye.  相似文献   

11.
Repair of acute injury to the cell membrane is an elemental process of normal cellular physiology, and defective membrane repair has been linked to many degenerative human diseases. The recent discovery of MG53 as a key component of the membrane resealing machinery allows for a better molecular understanding of the basic biology of tissue repair, as well as for potential translational applications in regenerative medicine. Here we detail the experimental protocols for exploring the in vivo function of MG53 in repair of muscle injury using treadmill exercise protocols on mouse models, for testing the ex vivo membrane repair capacity by measuring dye entry into isolated muscle fibers, and for monitoring the dynamic process of MG53-mediated vesicle trafficking and cell membrane repair in cultured cells using live cell confocal microscopy.  相似文献   

12.
Abstract

OBSERVATIONS ON THE RELATION BETWEEN PROTOPLASMIC ACCUMULATION OF THE FLUOROCHROME URANIN AND RESPIRATORY INTENSITY IN OSCILLATORIA IRRIGUA Kütz. — Uranin (sodic fluorescein) is a vital dye of peculiar cytophysiological interest, since it is accumulated chiefly in the nucleus, cytoplasm and chondriosomes of living plants cell. The degree of accumulation of this dye is in evident relation with the cellular activity.

In the present paper the relation between respiration and secundary fluorescence induced by uranin in the cells of Oscillatoria irrigua is demonstrated. The A. has also observed that a reduction of the respiratory activity of so coloured cells through inhibitory substances as f. i. oxyquinoline results in a releasing of uranin from the cell. In this case the dye is no more detained in the cells and flows outwards.

The true nature of the accumulation of uranin and its relations with the cellular activity are not yet clear, but its value as research mean to appreciate the cellular activity of organisms is emphasized.  相似文献   

13.
The emission spectra of the fluorochrome, SITS, are stable in the pH range of 4.5—12.0. The wavelength range giving maximum excitation was 340-360 mμ; range of maximum emission, 415-420 mμ In the animal cell types tested, HeLa, Chang liver, mouse L, and monkey kidney, all cellular membranes stained, but cell walk of plant tissue (Allium cepa) did not. The staining solution was 5 mg/ml of SITS in Earle's balanced salt solution. The preparations were mounted and viewed microscopically in this solution or, after staining and protracted storage in 9:1 methanol-formalin mixture they were mounted and viewed in this fixative. SITS may be useful as a vital dye since it distinguishes between living and dead cells.  相似文献   

14.
Microscopical studies on cells or tissues vitally stained with Neutral red (NR) were hitherto almost invariably confined to a few objects that could be investigated without tissue sectioning, for instance tissue culture. For NR, a cationic dye (molecular weight 289, PK 6,75) is easily soluble in water and organic solvents and diffuses during histological preparation for paraffin sectioning and even from cryostat sections. Thus comprehensive studies of vital staining of laboratory animals such as mouse and rat don't exist yet.This explains why it still remains doubtful, wether NR stains ‘preexisting’ or ‘newly formed’ granules, ‘paraplasmic’ cytoplasmic inclusion bodies or - complete or only partially - lysosomes and why it does so. We tried to solve these problems. Moreover we found that after intravital injection of the dye NR ‘stained’ the cells of the APUD-series (PEARSE) rather selectively as do catecholamines or catecholamine precursors. So it was to follow up wether NR could serve as a model for distribution studies of biogenic amines, too.The histological method that allows the localization of intravitally injected NR in tissue sections is freeze-drying. We applied freeze-drying to cryostat sections. The main advantages of this modiftcation are both the short time needed for the drying procedure and the large number of different tissues that can be cut and frozen-dried in the same time. In this way nearly all organs and tissues of the rat could be investigated.1 min after the intravenous injection of the dye NR has disappeared from the blood - at least in concentrations that are demonstrable in tissue sections. By using fluorescence microscopy the dye instead can be localized in all tissues being investigated mainly intracellularly. Apart from the diffuse staining of the cytoplasm in some tissues stained cell nuclei are observed. Intensely coloured nuclei together with a diffuse to scattered staining of the cytoplasm are signs of cell death.In some endocrine cells - mostly belonging to the APUD-series - a strong, often granular, reddening of the cytoplasm is seen; the nuclei are not stained. While the dosis and the form of application necessary to stain these endocrine cells, the intracellular localization and even the reactive groups (presumably carboxylic groups of the granule matrix) to which NR and catecholamines and their precursors are bound seem to be rather identic, some essential differences do exist: NR is easily and rapidly taken up and stored for a relatively short period, whereas biogenic amines accumulate in APUD - cells by active transport in a time - consuming process; their precursors are only stored following decarboxylation. - Secretory granules of some exocrine gland cells, too, may be vitally stained by NR.NR-staining of lysosomes is a well-known fact. We can add some details: a) There are-very characteristic for each of the tissues investigateddifferences in the time needed to stain lysosomes as well as in the duration of lysosomal staining: For instance lysosomes in the kidney proximal convolution are stained very rapidly directly after the injection of the dye and are destained in about 24 h, lysosomes in the thyroid epithelium are rapidly stained and destained, lysosomes in other organs need 45 to 60 min to get stained. c) There is no correlation between the vital staining of lysosomes and the characteristics lysosomes exhibit when stained by histologicalhistochemical methods in tissue sections. This may be due to the extraction from the tissue section of that particular component that, intravitally, binds the dye to lysosomes. - Differences in the composition of the lysosomal matrix in various organs are discussed as one major point of the heterogeneity of lysosomal vital staining with cationic dyes. d) NR vital staining of lysosomes of younger animals is less, that of older animals much more pronounced; lipopigment may, but must not neccessarily do so, exhibit a strong binding capacity for the cationic dye. e) In dehydration experiments the binding capacity oflysosomes is stronger, after premedication with reserpine less pronounced than normally. Desmethylimipramin has no effect at all.The so-called NR-crinom appears only in a few organs, resulting from autophagic as well as from heterophagic cell activity.Following albumin injection enlarged lysesomes are stained vitally in the renal proximal convolution. ‘Vacuoles’ induced by premedication with Macrodex® and glycerol remain unstained.NR is concentrated in the urine of the distal nephron and in the gastric lumen. Reabsorbtion occurs in the distal intestine.Essentially two factors are believed to be responsible for the pattern of NR vital staining: a) Its solubility that explains the distribution of the dye all over the organism, its diffusion through cell membranes and its elimination from the organism by ‘Non-ionic diffusion’. b) Its qualities as a light cationic dye that cause its - electrostatical - binding (‘storage’) to anionic sites of the tissue, for instance to carboxylic groups of the secretory granules of the APUDcells and carboxylic and/or phosphate groups of the lysosomal matrix.  相似文献   

15.
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.  相似文献   

16.
Strips of denervated adult mouse diaphragm muscle maintained in organ culture were reinnervated by nerve processes growing out from explants of embryonic mouse spinal cord. In vivo, following denervation, the action potential loses its sensitivity to tetrodotoxin; this sensitivity is regained upon reinnervation. Similarly, action potentials in cultured muscle fibres were insensitive to tetrodotoxin, and sensitivity was restored in muscle fibres that became reinnervated in vitro. Tetrodotoxin sensitivity was also restored in cultured muscle fibres reinnervated in the continuous presence of d-tubocurarine, but it was not induced by 4 days of direct electrical stimulation of noninnervated muscles. We conclude that developing nerve terminals can exert a trophic action on adult muscle fibres that is independent of electrical activity in the muscle.  相似文献   

17.
The embryonic urogenital sinus mesenchyme (UGM) induces prostate epithelial morphogenesis in development. The molecular signals that drive UGM-mediated prostatic induction have not been defined. We hypothesized that the TGF-β signaling directed the prostatic induction. UGM from TGF-β type II receptor stromal conditional knockout mice (Tgfbr2fspKO) or control mice (Tgfbr2floxE2/floxE2) was recombined with wild-type adult mice bladder urothelial cells. The resulting urothelium associated with Tgfbr2floxE2/floxE2 UGM was instructively differentiated into prostatic epithelium, as expected. In contrast, the urothelium associated with Tgfbr2fspKO UGM permissively maintained the phenotype of bladder epithelial cells. Microarray analysis of UGM tissues suggested the down-regulation of multiple Wnt ligands and the up-regulation of the Wnt antagonist, Wif 1, by the Tgfbr2fspKO UGM compared with Tgfbr2floxE2/floxE2 UGM. The overexpression of Wif-1 by wild-type UGM resulted in the inhibition of prostatic induction. These data suggest that the stromal TGF-β activity mediated by paracrine Wnt is necessary for the induction of prostatic differentiation. As Wnt ligands mediate differentiation and maintain the stem cell phenotype, the contribution of mouse stem cells and somatic cells to prostatic epithelium in the tissue recombination models was tested. The directed differentiation of mouse embryonic stem cells by UGM is suggested by a threshold number of mouse stem cells required in prostatic differentiation. To determine the contribution of somatic cells, the adult bladder epithelial compartment was labeled with green-fluorescent vital dye (CMFDA) and the stem-like cells marked by bromodeoxyuridine (BrdU) label-retention. The resulting prostatic epithelia of the tissue recombinants maintained the CMFDA dye, suggesting minimal cell division. Thus, the UGM can induce endoderm-derived epithelia and stem cells to form prostate through a transdifferentiation mechanism that requires stromal TGF-β signaling to mediate epithelial Wnt activity.  相似文献   

18.
Carbon monoxide (CO) is well known as a highly toxic poison at high concentrations, yet in physiologic amounts it is an endogenous biological messenger in organs such as the internal ear and brain. In this study we tested the hypothesis that chronic very mild CO exposure at concentrations 25-ppm increases the expression of oxidative stress protecting enzymes within the cellular milieu of the developing inner ear (cochlea) of the normal CD-1 mouse. In addition we tested also the hypothesis that CO can decrease the pre-existing condition of oxidative stress in the mouse model for the human medical condition systemic lupus erythematosus by increasing two protective enzymes heme-oxygenase-1 (HO-1), and superoxide dismutase-2 (SOD-2). CD-1 and MRL/lpr mice were exposed to mild CO concentrations (25 ppm in air) from prenatal only and prenatal followed by early postnatal day 5 to postnatal day 20. The expression of cell markers specific for oxidative stress, and related neural/endothelial markers were investigated at the level of the gene products by immunohistochemistry, proteomics and mRNA expression (quantitative real time-PCR). We found that in the CD-1 and MRL/lpr mouse cochlea SOD-2 and HO-1 were upregulated. In this mouse model of autoimmune disease defense mechanism are attenuated, thus mild CO exposure is beneficial. Several genes (mRNA) and proteins detected by proteomics involved in cellular protection were upregulated in the CO exposed CD-1 mouse and the MRL/lpr mouse.  相似文献   

19.
《Biophysical journal》2020,118(1):4-14
The electrical membrane potential (Vm) is one of the components of the electrochemical potential of protons across the biological membrane (proton motive force), which powers many vital cellular processes. Because Vm also plays a role in signal transduction, measuring it is of great interest. Over the years, a variety of techniques have been developed for the purpose. In bacteria, given their small size, Nernstian membrane voltage probes are arguably the favorite strategy, and their cytoplasmic accumulation depends on Vm according to the Nernst equation. However, a careful calibration of Nernstian probes that takes into account the tradeoffs between the ease with which the signal from the dye is observed and the dyes’ interactions with cellular physiology is rarely performed. Here, we use a mathematical model to understand such tradeoffs and apply the results to assess the applicability of the Thioflavin T dye as a Vm sensor in Escherichia coli. We identify the conditions in which the dye turns from a Vm probe into an actuator and, based on the model and experimental results, propose a general workflow for the characterization of Nernstian dye candidates.  相似文献   

20.
The classification of muscle fibres is of particular interest for the study of the skeletal muscle properties in a wide range of scientific fields, especially animal phenotyping. It is therefore important to define a reliable method for classifying fibre types. The aim of this study was to establish a simplified method for the immunohistochemical classification of fibres in mouse. To carry it out, we first tested a combination of several anti myosin heavy chain (MyHC) antibodies in order to choose a minimum number of antibodies to implement a semi-automatic classification. Then, we compared the classification of fibres to the MyHC electrophoretic pattern on the same samples. Only two anti MyHC antibodies on serial sections with the fluorescent labeling of the Laminin were necessary to classify properly fibre types in Tibialis Anterior and Soleus mouse muscles in normal physiological conditions. This classification was virtually identical to the classification realized by the electrophoretic separation of MyHC. This immuno-histochemical classification can be applied to the total area of Tibialis Anterior and Soleus mouse muscles. Thus, we provide here a useful, simple and time-efficient method for immunohistochemical classification of fibres, applicable for research in mouse.Key words: skeletal muscle, mouse, myosin heavy chain, immunohistochemistry, electrophoresis, image analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号