首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Comparative immunolocalisations of latent transforming growth factor-beta-1 binding protein (LTBP)-2, fibrillin-1, versican and perlecan were undertaken in foetal human and wild type C57BL/6 mouse and Hspg2 exon 3 null HS deficient mouse intervertebral discs (IVDs). LTBP-2 was a prominent pericellular component of annular fibrochondrocytes in the posterior annulus fibrosus (AF), interstitial matrix adjacent to nucleus pulposus (NP) cells and to fibrillar and cell associated material in the anterior AF of the human foetal IVD and also displayed a pericellular localisation pattern in murine IVDs. Perlecan and LTBP-2 displayed strong pericellular colocalisation patterns in the posterior AF and to fibrillar material in the outer anterior AF in the foetal human IVD. Versican was a prominent fibril-associated component in the posterior and anterior AF, localised in close proximity to fibrillin-1 in fibrillar arrangements in the cartilaginous vertebral rudiments around paraspinal blood vessels, to major collagen fibre bundles in the anterior and posterior AF and shorter fibres in the NP. Fibrillin-1 was prominent in the outer anterior AF of the human foetal IVD and in fibres extending from the AF into the cartilaginous vertebral rudiments. LTBP-2 was prominently associated with annular fibrils containing fibrillin-1, versican was localised in close proximity to these but not specifically with LTBP-2. The similar deposition levels of LTBP-2 observed in the AF of the Hspg2 exon 3 null and wild type murine IVDs indicated that perlecan HS was not essential for LTBP-2 deposition but colocalisation of LTBP-2 with perlecan in the foetal human IVD was consistent with HS mediated interactions which have already been demonstrated in-vitro.  相似文献   

2.
The aim of this study was to examine the comparative localisations of fibrillin-1 and perlecan in the foetal human, wild-type C57BL/6 and HS-deficient hspg2Δ3?/Δ3? exon 3 null mouse intervertebral disc (IVD) using fluorescent laser scanning confocal microscopy. Fibrillin-1 fibrils were prominent components of the outer posterior and anterior annulus fibrosus (AF) of the foetal human IVD. Finer fibrillin-1 fibrils were evident in the inner AF where they displayed an arcade-type arrangement in the developing lamellae. Relatively short but distinct fibrillin-1 fibrils were evident in the central region of the IVD and presumptive cartilaginous endplate and defined the margins of the nuclear sheath in the developing nucleus pulposus (NP). Fibrillin-1 was also demonstrated in the AF of C57BL/6 wild-type mice but to a far lesser extent in the HS-deficient hspg2Δ3?/Δ3? exon 3 null mouse. This suggested that the HS chains of perlecan may have contributed to fibrillin-1 assembly or its deposition in the IVD. The cell–matrix interconnections provided by the fibrillin fibrils visualised in this study may facilitate communication between disc cells and their local biomechanical microenvironment in mechanosensory processes which regulate tissue homeostasis. The ability of fibrillin-1 to sequester TGF-β a well-known anabolic growth factor in the IVD also suggests potential roles in disc development and/or remodelling.  相似文献   

3.
Cells isolated from intervertebral disc (IVD) tissues of human surgical samples are one of potential sources for the IVD cellular therapy. The purpose of this study was to develop a new non-enzymatic method, “tissue incubation”, for isolating human IVD cells. The IVD tissues of annulus fibrosus (AF) and nucleus pulposus (NP) were incubated separately in tissue culture flasks with culture medium. After 7–10 days incubation, cells were able to migrate out of IVD tissues and proliferate in vitro. After 3–4 weeks culture, expanded cells were harvested by trypsinization, and the remaining tissues were transferred to a new flask for another round of incubation. The molecular phenotype of IVD cells from juvenile and adult human samples was evaluated by both flow cytometry analysis and immunocytochemical staining for the expression of protein markers of NP cells (CD24, CD54, CD239, integrin α6 and laminin α5). Flow cytometry confirmed that both AF and NP cells of all ages positively expressed CD54 and integrin α6, with higher expression levels in NP cells than in AF cells for the juvenile group sample. However, CD24 expression was only found in juvenile NP cells, and not in AF or older disc cells. Similar expression patterns for NP markers were also confirmed by immunocytochemistry. In summary, this new non-enzymatic tissue incubation method for cell isolation preserves molecular phenotypic markers of NP cells and may provide a valuable cell source for the study of NP regeneration strategies.  相似文献   

4.
The aim of this study was to localize perlecan in human fetal spine tissues. Human fetal spines (12-20 weeks; n=6) were fixed in either Histochoice or 10% neutral buffered formalin, routinely processed, paraffin-embedded, and 4-microm sagittal sections were cut and stained with toluidine blue, H&E, and von Kossa. Perlecan, types I, II, IV, and X collagen, CD-31, aggrecan core protein, and native and delta-HS 4, 5 hexuronate stub epitopes were immunolocalized. Toluidine blue staining visualized the cartilaginous vertebral body (VB) rudiments and annular lamellae encompassing the nucleus pulposus (NP). Von Kossa staining identified the VB primary center of ossification. Immunolocalization of type IV collagen, CD-31, and perlecan delineated small blood vessels in the outer annulus fibrosus (AF) and large canals deep within the VBs. Perlecan and type X collagen were also prominently expressed by the hypertrophic vertebral growth plate chondrocytes. Aggrecan was extracellularly distributed in the intervertebral disk (IVD) with intense staining in the posterior AF. Notochordal tissue stained strongly for aggrecan but negatively for perlecan and types I and II collagen. Type I collagen was prominent in the outer AF and less abundant in the NP, while type II collagen was localized throughout the IVD and VB. The immunolocalization patterns observed indicated key roles for perlecan in vasculogenic, chondrogenic, and endochondral ossification processes associated with spinal development.  相似文献   

5.
The aim of this study was to immunolocalise perlecan in ovine vertebral growth plate (VGP) and cartilaginous endplate (CEP) cartilages using a monoclonal antibody (MAb A76) directed to a core protein epitope in perlecan domain-I, and to compare and contrast its localisation patterns with known cartilage matrix components. Perlecan was a prominent pericellular component of mature hypertrophic chondrocytes in the VGP and CEP in newborn 2- to 5-day-old sheep. Type I, II, VI and X collagen, chondroitin-4 and 6-sulphate, 7-D-4 chondroitin sulphate isomer proteoglycan epitope, keratan sulphate, aggrecan core protein, hyaluronan (HA) and hyaluronan binding proteins (HABPs) each had distinct localisation patterns in the VGP and CEP. Type X collagen was a prominent component of the VGP but was undetectable in the CEP. Aggrecan was strongly localised extracellularly throughout the VGP and CEP but increased cell-associated staining was also evident. In contrast to the aforementioned matrix components, HA, HABPs and perlecan were localised strongly to the pericellular matrices of the hypertrophic VGP and CEP chondrocytes apparently indicating an important role for these components in terminal chondrocyte differentiation.  相似文献   

6.
Novel sulphation motifs within the glycosaminoglycan chain structure of chondroitin sulphate (CS) containing proteoglycans (PGs) are associated with sites of growth, differentiation and repair in many biological systems and there is compelling evidence that they function as molecular recognition sites that are involved in the binding, sequestration or presentation of soluble signalling molecules (e.g. morphogens, growth factors and cytokines). Here, using monoclonal antibodies 3B3(-), 4C3 and 7D4, we examine the distribution of native CS sulphation motifs within the developing connective tissues of the human foetal knee joint, both during and after joint cavitation. We show that the CS motifs have broad, overlapping distributions within the differentiating connective tissues before the joint has fully cavitated; however, after cavitation, they all localise very specifically to the presumptive articular cartilage tissue. Comparisons with the labelling patterns of heparan sulphate (HS), HS-PGs (perlecan, syndecan-4 and glypican-6) and FGF-2, molecules with known signalling roles in development, indicate that these also become localised to the future articular cartilage tissue after joint cavitation. Furthermore, they display interesting, overlapping distributions with the CS motifs, reflective of early tissue zonation. The overlapping expression patterns of these molecules at this site suggests they are involved, or co-participate, in early morphogenetic events underlying articular cartilage formation; thus having potential clinical relevance to mechanisms involved in its repair/regeneration. We propose that these CS sulphation motifs are involved in modulating the signalling gradients responsible for the cellular behaviours (proliferation, differentiation, matrix turnover) that shape the zonal tissue architecture present in mature articular cartilage.  相似文献   

7.
The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.  相似文献   

8.

Introduction

Biglycan is an important proteoglycan of the extracellular matrix of intervertebral disc (IVD), and its decrease with aging has been correlated with IVD degeneration. Biglycan deficient (Bgn−/0) mice lack this protein and undergo spontaneous IVD degeneration with aging, thus representing a valuable in vivo model for preliminary studies on therapies for human progressive IVD degeneration. The purpose of the present study was to assess the possible beneficial effects of adipose-derived stromal cells (ADSCs) implants in the Bgn−/0 mouse model.

Methods

To evaluate ADSC implant efficacy, Bgn−/0 mice were intradiscally (L1-L2) injected with 8x104 ADSCs at 16 months old, when mice exhibit severe and complete IVD degeneration, evident on both 7Tesla Magnetic Resonance Imaging (7TMRI) and histology. Placebo and ADSCs treated Bgn−/0 mice were assessed by 7TMRI analysis up to 12 weeks post-transplantation. Mice were then sacrificed and implanted discs were analyzed by histology and immunohistochemistry for the presence of human cells and for the expression of biglycan and aggrecan in the IVD area.

Results

After in vivo treatment, 7TMRI revealed evident increase in signal intensity within the discs of mice that received ADSCs, while placebo treatment did not show any variation. Ultrastructural analyses demonstrated that human ADSC survival occurred in the injected discs up to 12 weeks after implant. These cells acquired a positive expression for biglycan, and this proteoglycan was specifically localized in human cells. Moreover, ADSC treatment resulted in a significant increase of aggrecan tissue levels.

Conclusion

Overall, this work demonstrates that ADSC implant into degenerated disc of Bgn−/0 mice ameliorates disc damage, promotes new expression of biglycan and increased levels of aggrecan. This suggests a potential benefit of ADSC implant in the treatment of chronic degenerative disc disease and prompts further studies in this field.  相似文献   

9.
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

10.
We undertook a comparative immunolocalisation study on type II collagen, aggrecan and perlecan in a number of 12- to 14-week-old human foetal and postnatal (7–19 months) ovine joints including finger, toe, knee, elbow, hip and shoulder. This demonstrated that perlecan followed a virtually identical immunolocalisation pattern to that of type II collagen in the foetal tissues, but a slightly divergent localisation pattern in adult tissues. Aggrecan was also localised in the cartilaginous joint tissues, which were clearly delineated by toluidine blue staining and the type II collagen immunolocalisations. It was also present in the capsular joint tissues and in ligaments and tendons in the joint, which stained poorly or not at all with toluidine blue. In higher power microscopic views, antibodies to perlecan also stained small blood vessels in the synovial lining tissues of the joint capsule; however, this was not discernable in low power macroscopic views where the immunolocalisation of perlecan to pericellular regions of cells within the cartilaginous rudiments was a predominant feature. Perlecan was also evident in small blood vessels in stromal connective tissues associated with the cartilage rudiments and with occasional nerves in the vicinity of the joint tissues. Perlecan was expressed by rounded cells in the enthesis attachment points of tendons to bone and in rounded cells in the inner third of the meniscus, which stained prominently with type II collagen and aggrecan identifying the chondrogenic background of these cells and local compressive loads. Flattened cells within the tendon and in the surface laminas of articular cartilages and the meniscus did not express perlecan. Collected evidence presented herein, therefore, indicates that besides being a basement membrane component, perlecan is also a marker of chondrogenic cells in prenatal cartilages. In postnatal cartilages, perlecan displayed a pericellular localisation pattern rather than the territorial or interterritorial localisation it displayed in foetal cartilages. This may reflect processing of extracellular perlecan presumably as a consequence of intrinsic biomechanical loading on these tissues or to divergent functions for perlecan and type II collagen in adult compared to prenatal tissues.  相似文献   

11.
In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family.  相似文献   

12.
Human disc degeneration is associated with increased MMP 7 expression.   总被引:2,自引:0,他引:2  
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

13.
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

14.
Summary The types and distribution of glycosaminoglycans (GAGs) were studied immunocytochemically in osteoid, mineralized bone matrix, and cartilage matrix of growing rat metaphyseal bone after aldehyde fixation and EDTA demineralization, using four monoclonal antibodies (mAbs 1-B-5, 2-B-6, 3-B-3 and 5-D-4). These mAbs specifically recognize epitopes in non-sulphated chondroitin (C0-S); chondroitin 4-sulphate (C4-S) and dermatan sulphate (DS); chondroitin 6-sulphate (C6-S) and C0-S; and keratan sulphate (KS) respectively. In osteoid, all mAbs except 1-B-5 weakly stained matrix material on and between collagen fibrils, and moderately stained organic material corresponding to bone nodules, which are known sites of mineralization. However, the staining of osteoid abruptly decreased at the mineralization front; weak staining was confined mostly to the organic material of bone nodules in mineralized bone matrix, with very weak or no staining of the rest of the bone matrix. This staining progressively decreased toward the mineralized cartilage matrix and became negative. The mineralized cartilage matrix and lamina limitans reacted strongly with all mAbs except 5-D-4. These results indicate that osteoid contains sulphated proteoglycans containing C4-S and/or DS, C6-S and KS, and subsequent bone matrix mineralization appears to require accumulation of these macromolecules within bone nodules and eventual loss of these substances for complete mineralization, whereas proteoglycans containing C0-S, C4-S and/or DS, and C6-S, still exist in mineralized cartilage matrix and lamina limitants.  相似文献   

15.
Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.  相似文献   

16.
Dahia CL  Mahoney E  Wylie C 《PloS one》2012,7(4):e35944
Intervertebral discs (IVD) are essential components of the vertebral column. They maintain separation, and provide shock absorbing buffers, between adjacent vertebrae, while also allowing movements between them. Each IVD consists of a central semi-liquid nucleus pulposus (NP) surrounded by a multi-layered fibrocartilagenous annulus fibrosus (AF). Although the IVDs grow and differentiate after birth along with the vertebral column, little is known about the mechanism of this. Understanding the signals that control normal IVD growth and differentiation would also provide potential therapies for degenerative disc disease, which is the major cause of lower back pain and affects a large proportion of the population. In this work, we show that during postnatal growth of the mouse, Sonic hedgehog (Shh) signaling from the NP cells controls many aspects of growth and differentiation of both the NP cells themselves and of the surrounding AF, and that it acts, at least partly, by regulating other signaling pathways in the NP and AF. Recent studies have shown that the NP cells arise from the embryonic notochord, which acts as a major signaling center in the embryo. This work shows that this notochord-derived tissue continues to carry out a major signaling function in the postnatal body and that the IVDs are signaling centers, in addition to their already known functions in the mechanics of vertebral column function.  相似文献   

17.

Introduction

The aims of these studies were to identify the cytokine and chemokine expression profile of nucleus pulposus (NP) cells and to determine the relationships between NP cell cytokine and chemokine production and the characteristic tissue changes seen during intervertebral disc (IVD) degeneration.

Methods

Real-time q-PCR cDNA Low Density Array (LDA) was used to investigate the expression of 91 cytokine and chemokine associated genes in NP cells from degenerate human IVDs. Further real-time q-PCR was used to investigate 30 selected cytokine and chemokine associated genes in NP cells from non-degenerate and degenerate IVDs and those from IVDs with immune cell infiltrates (‘infiltrated’). Immunohistochemistry (IHC) was performed for four selected cytokines and chemokines to confirm and localize protein expression in human NP tissue samples.

Results

LDA identified the expression of numerous cytokine and chemokine associated genes including 15 novel cytokines and chemokines. Further q-PCR gene expression studies identified differential expression patterns in NP cells derived from non-degenerate, degenerate and infiltrated IVDs. IHC confirmed NP cells as a source of IL-16, CCL2, CCL7 and CXCL8 and that protein expression of CCL2, CCL7 and CXCL8 increases concordant with histological degenerative tissue changes.

Conclusions

Our data indicates that NP cells are a source of cytokines and chemokines within the IVD and that these expression patterns are altered in IVD pathology. These findings may be important for the correct assessment of the ‘degenerate niche’ prior to autologous or allogeneic cell transplantation for biological therapy of the degenerate IVD.  相似文献   

18.
The aim of this study was to construct tissue-engineered composite intervertebral disc (IVD) consisting of demineralized bone matrix gelatin (DBMG) and collagenII/hyaluronate/chondroitin-6-sulfate (CII/HyA–CS) scaffolds seeded with anulus fibrosus (AF) and nucleus pulposus (NP) cells, respectively. The cell-scaffold hybrids were implanted in the subcutaneous space of the dorsum of athymic mice and harvested at 4, 8, and 12 weeks. At each time point, the gross and histological morphology and biochemical properties were evaluated. Our results are as following: the gross morphology and histology of the composite resembled those of native IVD. Morphological studies revealed progressive tissue formation and junction integration between AF and NP regions. Biochemical composition detection indicated that the content of DNA, proteoglycan and hydroxyproline increased with time, and were similar to native tissue at 12 weeks. All these results demonstrated the feasibility of creating a tissue-engineered composite IVD with similar morphological and biochemical properties to the native tissue.  相似文献   

19.
Low back pain is a common and debilitating disorder. Current evidence implicates intervertebral disc (IVD) degeneration and herniation as major causes, although the pathogenesis is poorly understood. While several cytokines have been implicated in the process of IVD degeneration and herniation, investigations have predominately focused on Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFalpha). However, to date no studies have investigated the expression of these cytokines simultaneously in IVD degeneration or herniation, or determined which may be the predominant cytokine associated with these disease states. Using quantitative real time PCR and immunohistochemistry we investigated gene and protein expression for IL-1beta, TNFalpha and their receptors in non-degenerate, degenerate and herniated human IVDs. IL-1beta gene expression was observed in a greater proportion of IVDs than TNFalpha (79% versus 59%). Degenerate and herniated IVDs displayed higher levels of both cytokines than non-degenerate IVDs, although in degenerate IVDs higher levels of IL-1beta gene expression (1,300 copies/100 ng cDNA) were observed compared to those of TNFalpha (250 copies of TNFalpha/100 ng cDNA). Degenerate IVDs showed ten-fold higher IL-1 receptor gene expression compared to non-degenerate IVDs. In addition, 80% of degenerate IVD cells displayed IL-1 receptor immunopositivity compared to only 30% of cells in non-degenerate IVDs. However, no increase in TNF receptor I gene or protein expression was observed in degenerate or herniated IVDs compared to non-degenerate IVDs. We have demonstrated that although both cytokines are produced by human IVD cells, IL-1beta is expressed at higher levels and in more IVDs, particularly in more degenerate IVDs (grades 4 to 12). Importantly, this study has highlighted an increase in gene and protein production for the IL-1 receptor type I but not the TNF receptor type I in degenerate IVDs. The data thus suggest that although both cytokines may be involved in the pathogenesis of IVD degeneration, IL-1 may have a more significant role than TNFalpha, and thus may be a better target for therapeutic intervention.  相似文献   

20.
Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 h of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4 kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5 N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号