首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc is the most common trace mineral after iron in the human body. In organisms, zinc transporters help zinc influx and efflux from cells. A previous study has reported that Zip2 was up-regulated over 27-fold in human monocytic THP-1 cells, when intracellular zinc was depleted by TPEN. Our study found Zip2 was over-expressed in leukocytes of asthmatic infants, especially those in which the serum zinc level was lower than those in healthy infants. Pulmonary tuberculosis (PTB) patients have significantly low serum zinc levels. Here we investigated whether Zip2 level was changed in the patients with PTB. Zip2 mRNA and protein levels in peripheral blood mononuclear cells (PBMC) from PTB (n 1 = 23) and healthy controls (n 2 = 42) were detected by quantitative real-time PCR and western blot, respectively. mRNA expression levels of another four zinc transporters, Zip1, Zip6, Zip8 and ZnT1, were detected by quantitative real-time PCR. Zip2 mRNA level was significantly up-regulated in PTB patients (P = 0.001), and Zip8 mRNA level was significantly down-regulated compared with control individuals (P < 0.001). In contrast, there were no significant changes in mRNA levels of Zip1, Zip6 and ZnT1 in either group (P > 0.05). Zip2 protein expression levels increased in PTB patients compared with control individuals. Our study found that knockdown of ZIP2 with siRNA caused a decrease in Zip2 levels in PBMC of PTB patients, while reducing the expression of INF-γ (P < 0.01) and increasing the expression of IL-6(P < 0.01). These data provide evidence that increased expression of Zip2 gene is closely associated with immunity of PTB patients, suggesting that the Zip2 gene may play a key role in the initial infection control of the human body, by promoting and maintaining the immune response of adaptive T cells.  相似文献   

2.
Phytic acid is a major determinant of zinc bioavailability. Little is known about phytic acid intakes or indices of zinc bioavailability in type 2 diabetes mellitus (DM), a condition that predisposes to zinc deficiency. The aim of this cross-sectional study was to measure and explore the relationships among phytic acid intake, zinc bioavailability, and molecular markers of zinc homeostasis in 20 women with DM compared to 20 healthy women. The phytate/zinc, (calcium)(phytate)/zinc, and (calcium + magnesium)(phytate)/zinc molar ratios were used to indicate zinc bioavailability. Plasma zinc concentrations and zinc transporter (ZnT1, ZnT8, and Zip1) gene expression in mononuclear cells were measured. Participants with DM consumed 1,194?±?824?mg/day (mean?±?SD) phytic acid, an amount similar to the intake of healthy women (1,316?±?708?mg/day). Bread products and breakfast cereals contributed more than 40?% of the phytic acid intake in each group. A positive relationship was observed in all participants between phytic acid and dietary fiber (r?=?0.6, P?<?0.001) and between dietary fiber and the (calcium)(phytate)/zinc ratio (r?=?0.5, P?<?0.001). Compared to the healthy group, the messenger RNA ratio of ZnT1 (zinc export) to Zip1 (zinc import) was lower in participants with DM, which may indicate perturbed zinc homeostasis in the disorder. The plasma zinc concentration was not predicted by age, body mass index, health status, zinc bioavailability, or zinc transporter expression. Healthy and diabetic women consume phytic acid in amounts that are likely to decrease the bioavailability of dietary zinc. Recommendations to consume greater amounts of dietary fiber, much of which is associated with phytate, increase the risk of zinc deficiency.  相似文献   

3.
Type 2 diabetes mellitus (DM) is associated often with underlying zinc deficiency and nutritional supplements such as zinc may be of therapeutic benefit in the disease. In a randomized, double-blind, placebo-controlled, 12-week trial in postmenopausal women (n = 48) with Type 2 DM we investigated the effects of supplementation with zinc (40 mg/d) and flaxseed oil (FSO; 2 g/d) on the gene expression of zinc transporters (ZnT1, ZnT5, ZnT6, ZnT7, ZnT8, Zip1, Zip3, Zip7, and Zip10) and metallothionein (MT-1A, and MT-2A), and markers of glycemic control (glucose, insulin, glycosylated hemoglobin [HbA1c]). The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. No significant effects of zinc or FSO supplementation were observed on glycemic marker concentrations, HOMA-IR or fold change over 12 weeks in zinc transporter and metallothionein gene expression. In multivariate analysis, the change over 12 weeks in serum glucose concentrations (P = 0.001) and HOMA-IR (P = 0.001) predicted the fold change in Zip10. In secondary analysis, marginal statistical significance was observed with the change in both serum glucose concentrations (P = 0.003) and HOMA-IR (P = 0.007) being predictive of the fold change in ZnT6. ZnT8 mRNA expression was variable; HbA1c levels were higher (P = 0.006) in participants who exhibited ZnT8 expression compared to those who did not. The significant predictive relationships between Zip10, ZnT6, serum glucose and HOMA-IR are preliminary, as is the relationship between HbA1c and ZnT8; nevertheless the observations support an association between Type 2 DM and zinc homeostasis that requires further exploration.  相似文献   

4.
The pathology of type 2 diabetes mellitus (DM) often is associated with underlying states of conditioned zinc deficiency and chronic inflammation. Zinc and omega-3 polyunsaturated fatty acids each exhibit anti-inflammatory effects and may be of therapeutic benefit in the disease. The present randomized, double-blind, placebo-controlled, 12-week trial was designed to investigate the effects of zinc (40 mg/day) and α-linolenic acid (ALA; 2 g/day flaxseed oil) supplementation on markers of inflammation [interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-reactive protein (CRP)] and zinc transporter and metallothionein gene expression in 48 postmenopausal women with type 2 DM. No significant effects of zinc or ALA supplementation were observed on inflammatory marker concentrations or fold change in zinc transporter and metallothionein gene expression. Significant increases in plasma zinc concentrations were observed over time in the groups supplemented with zinc alone or combined with ALA (P=.007 and P=.009, respectively). An impact of zinc treatment on zinc transporter gene expression was found; ZnT5 was positively correlated with Zip3 mRNA (P<.001) only in participants receiving zinc, while zinc supplementation abolished the relationship between ZnT5 and Zip10. IL-6 predicted the expression levels and CRP predicted the fold change of the ZnT5, ZnT7, Zip1, Zip7 and Zip10 mRNA cluster (P<.001 and P=.031, respectively). Fold change in the expression of metallothionein mRNA was predicted by TNF-α (P=.022). Associations among inflammatory cytokines and zinc transporter and metallothionein gene expression support an interrelationship between zinc homeostasis and inflammation in type 2 DM.  相似文献   

5.
IntroductionSubclinical deficiency of zinc is associated with impairment of immune system function, growth, and cognitive development in children. Although plasma zinc is the best available biomarker of the risk of zinc deficiency in populations, its sensitivity for early detection of deficiency is limited. Therefore, we aimed to investigate zinc deficiency among preschool children and its relationship with whole blood gene expression of zinc transporters ZIP4 and ZnT1.Material and methodsThis cross-sectional study included 139 children aged 32–76 months enrolled in philanthropic day-care centers. We performed an anthropometric evaluation, weighed food record and dietary record for dietary assessment, blood sample collection for zinc, and whole blood gene expression analyses of ZnT1 (SLC30A1) and ZIP4 (SLC39A4).ResultsZinc deficiency was observed in 26.6 % of the children despite adequate zinc intake and a phytate:zinc molar ratio < 18. Usual zinc intake did not affect whole blood gene expression of zinc transporters, but zinc status influenced ZnT1 and ZIP4 whole blood mRNA. Children with zinc deficiency exhibited 37.1 % higher ZnT1 expression and 45.3 % lower ZIP4 expression than children with adequate zinc (p < 0.05).ConclusionChildren with plasma zinc deficiency exhibited higher expression of ZnT1 and lower expression of ZIP4 in whole blood mRNA, reinforcing the existence of strong regulation of mineral homeostasis according to the nutritional status, indicating that this analysis may be useful in the evaluation of dietary interventions.  相似文献   

6.
7.
The lethal milk mouse syndrome is caused by a point mutation in the zinc transporter gene ZnT4 resulting in defective zinc secretion in the milk of homozygous mutant dams. Pups of any genotype fed solely on lm milk die within the first two weeks of neonatal life, displaying zinc deficiency symptoms. Homozygous mutant pups survive when foster nursed by wild type dams and show signs of mild zinc deficiency in adulthood. To further investigate the role of ZnT4 in zinc secretion in the intestinal epithelium, we have studied the expression by real time quantitative PCR of mutant ZnT4 and of other zinc transporters of the Zip and ZnT families, in the jejunum of homozygous lm mice and of the isogenic wild type strain C57BL/ 6J. We report in this paper that expression of the mutant ZnT4 mRNA, carrying a premature translational termination codon (ZnT4/lm), is almost absent in tissues from lm mice, probably as a result of degradation by the Nonsense Mediated mRNA Decay (NMD) Pathway. In the jejunum of mutant mice, we also observed decreased expression of the uptake zinc transporter Zip4, paralleled by increased levels of both metallothionein genes MTI and MTII. Zinc supplementation of lm mice in the drinking water did not result in further decrease of Zip4 expression, but led to full induction of MT mRNAs. These results lead us to conclude that, although in the enterocytes of lm mice the absence of the zinc secretion activity mediated by ZnT4 results in increased intracellular zinc concentration, other zinc efflux activities are able to maintain the level of zinc ions below the threshold necessary for full induction of metallothioneins.  相似文献   

8.
Dysfunctional zinc signaling is implicated in disease processes including cardiovascular disease, Alzheimer''s disease and diabetes. Of the twenty-four mammalian zinc transporters, ZIP7 has been identified as an important mediator of the ‘zinc wave’ and in cellular signaling. Utilizing siRNA targeting Zip7 mRNA we have identified that Zip7 regulates glucose metabolism in skeletal muscle cells. An siRNA targeting Zip7 mRNA down regulated Zip7 mRNA 4.6-fold (p = 0.0006) when compared to a scramble control. This was concomitant with a reduction in the expression of genes involved in glucose metabolism including Agl, Dlst, Galm, Gbe1, Idh3g, Pck2, Pgam2, Pgm2, Phkb, Pygm, Tpi1, Gusb and Glut4. Glut4 protein expression was also reduced and insulin-stimulated glycogen synthesis was decreased. This was associated with a reduction in the mRNA expression of Insr, Irs1 and Irs2, and the phosphorylation of Akt. These studies provide a novel role for Zip7 in glucose metabolism in skeletal muscle and highlight the importance of this transporter in contributing to glycaemic control in this tissue.  相似文献   

9.
10.
Zinc concentrations in the dorsal horn of spinal cord are important for wound healing, neurological function, and reproduction. However, the response of the spinal cord to alterations in dietary zinc is unknown in rats after spinal cord injury (SCI). The current study explored cellular zinc levels and zinc transporter 1 (ZnT1) expression in the dorsal horn of spinal cord with different dietary zinc after SCI. A hundred and forty-four male Wistar rats were randomly divided into four groups: sham-operated group (30?mg Zn/kg), zinc-high dietary SCI model group (ZH, 180?mg Zn/kg), zinc-adequate dietary SCI model group (30?mg Zn/kg), and marginal zinc-deficient dietary SCI model group (MZD, 5?mg Zn/kg). To test the hypothesis that dietary zinc may regulate role of ZnT1 expression in dorsal horn after acute SCI, we traced ZnT1 proteins and zinc ions with immunohistochemistry, western blot, and autometallography. Zinc and ZnT1 levels of the dorsal horn in ZH significantly increased after surgery (P?<?0.05), reached peak level (P?<?0.05) on the seventh day, and subsequently levels of their expression began to decrease. But zinc levels and ZnT1 expression of spinal cord in MZD dietary groups decreased (P?<?0.05) in SCI. There was a positive correlation between ZnT1 protein and zinc content in spinal cord (R?=?0.49880, P?=?0.0492). We found that both zinc and ZnT1 expressions in spinal cord are regulated by dietary zinc. These results indicate that dietary zinc may regulate the expression of ZnT1 in the dorsal horn of spinal cord after SCI. ZnT1 may, at the same time, play a significant role in the maintenance of zinc homeostasis in SCI.  相似文献   

11.
Movement of zinc ions across cellular membranes is achieved mainly by two families of zinc transport genes encoding multi-transmembrane domain proteins. Members of the Zip family generally transport zinc into the cytosol, either from outside the cell or from the lumen of subcellular organelles such as the endoplasmic reticulum, Golgi, endosomes or storage vacuoles. ZnT proteins move zinc in the opposite direction, resulting in efflux from the cell or uptake into organelles. Zinc homeostasis at both the cellular and systemic level is achieved by the coordinated action of numerous Zip and ZnT proteins, twenty-four in mammals and seventeen in the vinegar fly Drosophila melanogaster. Previously, we have identified a zinc toxicity phenotype in the Drosophila eye, caused by targeted over expression of dZip42C.1 (dZip1) combined with knockdown of dZnT63C (dZnT1). In general, this phenotype was rescued by increased zinc efflux or decreased uptake and was exacerbated by decreased efflux or increased uptake. Now we have identified three additional zinc dyshomeostasis phenotypes caused by over expression of dZnT86D, dZnT86DeGFP and dZip71BFLAG. Genetic and dietary manipulation experiments showed that these three phenotypes all differ both from each other and from our original zinc toxicity phenotype. Based on these data and the approximate subcellular localization of each zinc transport protein, we propose that each phenotype represents a different redistribution of zinc within these cells, resulting in a Golgi zinc toxicity, a Golgi zinc deficiency and a combined Golgi/other organelle zinc toxicity respectively. We are able to group the remaining Drosophila Zip and ZnT genes into several functional categories based on their interaction with the three novel zinc dyshomeostasis phenotypes, allowing the role of each zinc transport protein to be defined in greater detail. This research highlights the differential effects that redistribution of zinc can have within a particular tissue and identifies the Golgi as being particularly sensitive to both excess and insufficient zinc.  相似文献   

12.
Platelet-derived growth factor (PDGF)-, epidermal growth factor (EGF)- and insulin-like growth factor I (IGF-I)-stimulated cell proliferation in 3T3 cells was accompanied by increased abundance of labile intracellular pool of zinc (LIPZ). However, the origin and regulation of this cell proliferation-associated increase in the abundance of LIPZ are unknown. Cellular zinc homeostasis involves zinc transporters and metallothionein. The objectives of this study were to determine whether cell proliferation-associated increase in the abundance of LIPZ was a result of an increased zinc uptake and to assess the involvement of zinc transporters and metallothionein in this cell proliferation-associated increase in the abundance of LIPZ in 3T3 fibroblasts. Zinc transporters assessed included both zinc importer (Zip1) and zinc exporters (ZnT1, ZnT2 and ZnT4). Growth factors increased the abundance of LIPZ while total cellular zinc concentration remained unaffected, demonstrating that LIPZ was responsive to the increased needs for zinc during growth factor-stimulated cell proliferation. Growth factors also increased net zinc retention as indicated by higher 65zinc radioactivity and elevated mRNA levels of Zip1, ZnT1 and ZnT4. Although zinc is essential to cell proliferation, excessive cellular zinc accumulation causes cytotoxicity. Collectively, these observations suggest that increase in the abundance of LIPZ during growth factor-stimulated cell proliferation was due to increased net retention of extracellular zinc, which was apparently achieved through a coordinated up-regulation of the expression of transporters involved in both zinc influx and efflux to ensure adequate supply of zinc to sustain cell proliferation, yet to prevent potential zinc cytotoxicity in 3T3 cells.  相似文献   

13.
Zinc is an essential nutrient for all organisms, which is involved in the function of numerous key enzymes in metabolism. Two gene families have been identified involved in zinc homeostasis. ZnT transporters reduce intracellular zinc while Zip transporters increase intracellular zinc. Previous studies in our laboratory have shown that Zip-1, ZnT-1, Zip-2 and LIV-1 mRNA are associated with zinc level in established human breast cancer in nude mice model. In this study, six zinc transporters: ZnT-1, ZnT-2, ZnT-4, Zip-1, Zip-8 and Zip-13 were chosen. We aim to determine the relation between zinc transporters and zinc level in kidney and lung of Wistar rats. Eighteen Wistar rats were randomly divided into three groups: normal group, zinc-deficiency group and pair-fed group. After 22 days, the rats were killed and organs samples were taken, then zinc transporters mRNA were detected by RT-PCR. Compared with the normal group, Zip-13 shows an up-regulation (P < 0.05) in zinc-deficiency group both in kidney and lung, and Zip-8 was significantly lower (P < 0.05) in zinc-deficiency group in kidney.  相似文献   

14.
15.
16.
Anaemia is a widespread problem especially in the tropics. Among adolescent girls, it has negative consequences on growth, school performance, morbidity and reproductive performance. A cross-sectional study was conducted to investigate the prevalence of anaemia, iron, folate, zinc and copper deficiencies amongst adolescent schoolgirls in New Halfa, eastern Sudan, and to examine the relationship of these micronutrients with haemoglobin (Hb) levels. Out of 187 adolescent schoolgirls, 181 (96.8%) had anaemia (Hb?<?12 g/dl); 21% had mild anaemia (Hb 11.0–11.9 g/dl); 66.8.1% had moderate anaemia (Hb 8.0–10.9 g/dl), and 12.1% had severe anaemia (Hb?<?8 g/dl), respectively. Iron deficiency (S-ferritin?<?12 μg/l), iron deficiency anaemia (<12 m/dl and S- ferritin?<?12 μg/l) and folate deficiency (S-folate?<?3 ng/ml) were prevalent in 17.6%, 16.5% and 69% of these girls, respectively. Nine percent and 5.9% of these girls had zinc (<75 μg/ml) and copper deficiency (<75 μg/ml), respectively. Twenty-six (14%) girls had ≥2 micronutrient deficiencies. S-ferritin and zinc were significantly lower in patients with severe anaemia. Haemoglobin levels were significantly positively correlated with zinc levels (r?=?0.161, P?=?0.03) and with copper levels (r?=?0.151, P?=?0.03). Thus, interventions are required to prevent and control anaemia in this setting. Further research is needed.  相似文献   

17.
18.
We investigated the effects of a short-term dietary zinc deficiency on bone metabolism. Zinc deficiency increased the mRNA expression of zinc uptake transporters such as Zip1, Zip13, and Zip14 in bone. However, zinc deficiency might not maintain zinc storage in bone, resulting in a decrease in bone formation through downregulation of the expression levels of osteoblastogenesis-related genes.  相似文献   

19.
Abstract

Zinc homeostasis is maintained by 24 tissue-specific zinc transporters which include ZnTs (ZnT1-10), ZIPs (ZIP1-14), in addition to metallothionein (MT). Current study aimed the role of zinc transporters in maintaining the basal levels of zinc in functionally contrasting tissue specific THP-1 (monocyte), RD (muscle), and Saos-2 (bone) cells. Zinc transporters expression was assessed by qRT-PCR. The mRNA levels of ZnTs (ZnT5-7 & ZnT9), ZIPs (ZIP6-10, ZIP13-14), and MT were significantly (p?<?0.05) higher in Saos-2 compared to THP-1 and RD. The present study suggests that distinct expression pattern of zinc transporters and metallothionein might be responsible for the differential zinc assimilation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号