首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenovirus-mediated overexpression of human apolipoprotein E (apoE) induces hyperlipidemia by stimulating the VLDL-triglyceride (TG) production rate and inhibiting the LPL-mediated VLDL-TG hydrolysis rate. Because apoC-III is a strong inhibitor of TG hydrolysis, we questioned whether Apoc3 deficiency might prevent the hyperlipidemia induced by apoE overexpression in vivo. Injection of 2 x 10(9) plaque-forming units of AdAPOE4 caused severe combined hyperlipidemia in Apoe-/- mice [TG from 0.7 +/- 0.2 to 57.2 +/- 6.7 mM; total cholesterol (TC) from 17.4 +/- 3.7 to 29.0 +/- 4.1 mM] that was confined to VLDL/intermediate density lipoprotein-sized lipoproteins. In contrast, Apoc3 deficiency resulted in a gene dose-dependent reduction of the apoE4-associated hyperlipidemia (TG from 57.2 +/- 6.7 mM to 21.2 +/- 18.5 and 1.5 +/- 1.4 mM; TC from 29.0 +/- 4.1 to 16.4 +/- 9.8 and 2.3 +/- 1.8 mM in Apoe-/-, Apoe-/-.Apoc3+/-, and Apoe-/-.Apoc3-/- mice, respectively). In both Apoe-/- mice and Apoe-/-.Apoc3-/- mice, injection of increasing doses of AdAPOE4 resulted in up to a 10-fold increased VLDL-TG production rate. However, Apoc3 deficiency resulted in a significant increase in the uptake of TG-derived fatty acids from VLDL-like emulsion particles by white adipose tissue, indicating enhanced LPL activity. In vitro experiments showed that apoC-III is a more specific inhibitor of LPL activity than is apoE. Thus, Apoc3 deficiency can prevent apoE-induced hyperlipidemia associated with a 10-fold increased hepatic VLDL-TG production rate, most likely by alleviating the apoE-induced inhibition of VLDL-TG hydrolysis.  相似文献   

2.
Apolipoprotein E2 (apoE2)-associated hyperlipidemia is characterized by a disturbed clearance of apoE2-enriched VLDL remnants. Because excess apoE2 inhibits LPL-mediated triglyceride (TG) hydrolysis in vitro, we investigated whether direct or indirect stimulation of LPL activity in vivo reduces the apoE2-associated hypertriglyceridemia. Here, we studied the role of LPL and two potent modifiers, the LPL inhibitor apoC-III and the LPL activator apoA-V, in APOE2-knockin (APOE2) mice. Injection of heparin in APOE2 mice reduced plasma TG by 53% and plasma total cholesterol (TC) by 18%. Adenovirus-mediated overexpression of LPL reduced plasma TG by 85% and TC by 40%. Both experiments indicate that the TG in apoE2-enriched particles is a suitable substrate for LPL. Indirect activation of LPL activity via deletion of Apoc3 in APOE2 mice did not affect plasma TG levels, whereas overexpression of Apoa5 in APOE2 mice did reduce plasma TG by 81% and plasma TC by 41%. In conclusion, the hypertriglyceridemia in APOE2 mice can be ameliorated by the direct activation of LPL activity. Indirect activation of LPL via overexpression of apoA-V does, whereas deletion of apoC-III does not, affect the plasma TGs in APOE2 mice. These data indicate that changes in apoA-V levels have a dominant effect over changes in apoC-III levels in the improvement of APOE2-associated hypertriglyceridemia.  相似文献   

3.
Apolipoprotein (apo) E has been implicated in cholesterol and triglyceride homeostasis in humans. At physiological concentration apoE promotes efficient clearance of apoE-containing lipoprotein remnants. However, high apoE plasma levels correlate with high plasma triglyceride levels. We have used adenovirus-mediated gene transfer in apoE-deficient mice (E(-)/-) to define the domains of apoE required for cholesterol and triglyceride homeostasis in vivo. A dose of 2 x 10(9) plaque-forming units of apoE4-expressing adenovirus reduced slightly the cholesterol levels of E(-)/- mice and resulted in severe hypertriglyceridemia, due to accumulation of cholesterol and triglyceride-rich very low density lipoprotein particles in plasma. In contrast, the truncated form apoE4-202 resulted in a 90% reduction in the plasma cholesterol levels but did not alter plasma triglyceride levels in the E(-)/- mice. ApoE secretion by cell cultures, as well as the steady-state hepatic mRNA levels in individual mice expressing apoE4 or apoE4-202, were similar. In contrast, very low density lipoprotein-triglyceride secretion in mice expressing apoE4, but not apoE4-202, was increased 10-fold, as compared with mice infected with a control adenovirus. The findings suggest that the amino-terminal 1-202 region of apoE4 contains the domains required for the in vivo clearance of lipoprotein remnants. Furthermore, the carboxyl-terminal 203-299 residues of apoE promote hepatic very low density lipoprotein-triglyceride secretion and contribute to apoE-induced hypertriglyceridemia.  相似文献   

4.
Apolipoprotein E (apoE) promotes receptor-mediated catabolism of apoE-containing lipoprotein remnants. Impairments in remnant clearance are associated with type III hyperlipoproteinemia and premature atherosclerosis. In humans, apoE plasma levels correlate with plasma triglyceride levels, suggesting that excess apoE may also affect plasma triglyceride levels. We have used adenovirus-mediated gene transfer in mice to map the domains of apoE required for cholesterol and triglyceride clearance, in vivo. Adenovirus expressing apoE3 and apoE4 at doses of (1-2) x 10(9) pfu increased plasma cholesterol and triglyceride levels in normal C57BL6 mice and failed to normalize the high cholesterol levels of apoE-deficient mice due to induction of hypertriglyceridemia. In contrast, an adenovirus expressing the truncated apoE 1-185 form normalized the cholesterol levels of E(-)(/)(-) mice and did not cause hypertriglyceridemia. Northern blot analysis of hepatic RNA from mice expressing the full-length and the truncated apoE forms showed comparable steady-state apoE mRNA levels of the full-length apoE forms that cause hyperlipidemia and the truncated apoE forms that do not cause hyperlipidemia. The findings suggest that the amino-terminal residues 1-185 of apoE are sufficient for the clearance of apoE-containing lipoprotein remnants by the liver, whereas domains of the carboxy-terminal one-third of apoE are required for apoE-induced hyperlipidemia.  相似文献   

5.
We have used adenovirus-mediated gene transfer and bolus injection of purified apolipoprotein E (apoE) in mice to determine the contribution of LDL receptor family members in the clearance of apoE-containing lipoproteins in vivo and the factors that trigger hypertriglyceridemia. A low dose [5 x 10(8) plaque-forming units (pfu)] of an adenovirus expressing apoE4 did not normalize plasma cholesterol levels of apolipoprotein E-deficient (apoE(-/-)) x low density lipoprotein receptor-deficient (LDLr(-/-)) mice and induced hypertriglyceridemia. A similar phenotype of combined dyslipidemia was induced in apoE(-/-) or apoE(-/-) x LDLr(-/-) mice after infection with a low dose (4 x 10(8) pfu) of an adenovirus expressing the apoE4[R142V/R145V] mutant previously shown to be defective in receptor binding. In contrast, a low dose of 5 x 10(8) pfu of the apoE4-expressing adenovirus corrected hypercholesterolemia in apoE(-/-) mice and did not trigger hypertriglyceridemia. Bolus injection of purified apoE in apoE(-/-) x LDLr(-/-) mice did not clear plasma cholesterol levels and induced mild hypertriglyceridemia. In contrast, similar injection of apoE in apoE(-/-) mice cleared plasma cholesterol and caused transiently mild hypertriglyceridemia. These findings suggest that a) the LDL receptor alone can account for the clearance of apoE-containing lipoproteins in mice, and the contribution of other receptors is minimal, and b) defects in either the LDL receptor or in apoE that affect its interactions with the LDL receptor, increase the sensitivity to apoE-induced hypertriglyceridemia in mice.  相似文献   

6.
Apolipoprotein E2, which has an R158 for C substitution, has reduced affinity for the LDL receptor and is associated with type III hyperlipoproteinemia in humans. Consistent with these observations, we have found that following adenovirus-mediated gene transfer, full-length apoE2 aggravates the hypercholesterolemia and induces hypertriglyceridemia in E-deficient mice and induces combined hyperlipidemia in C57BL/6 mice. Unexpectedly, the truncated apoE2-202 form that has an R158 for C substitution when expressed at levels similar to those of the full-length apoE2 normalized the cholesterol levels of E-deficient mice without induction of hypertriglyceridemia. The apoE2 truncation increased the affinity of POPC-apoE particles for the LDL receptor, and the full-length apoE2 had a dominant effect in VLDL triglyceride secretion. Hyperlipidemia in normal C57BL/6 mice was prevented by coinfection with equal doses of each, the apoE2 and the apoE2-202-expressing adenoviruses, indicating that truncated apoE forms have a dominant effect in remnant clearance. Hypertriglyceridemia was completely corrected by coinfection of mice with an adenovirus-expressing wild-type lipoprotein lipase, whereas an inactive lipoprotein lipase had a smaller effect. The findings suggest that the apoE2-induced dyslipidemia is not merely the result of substitution of R158 for C but results from increased secretion of a triglyceride-enriched VLDL that cannot undergo lipolysis, inhibition of LpL activity, and impaired clearance of chylomicron remnants. Infection of E(-)(/)(-)xLDLr(-)(/)(-) double-deficient mice with apoE2-202 did not affect the plasma cholesterol levels, and also did not induce hypertriglyceridemia. In contrast, apoE2 exacerbated the hypercholesterolemia and induced hypertriglyceridemia, suggesting that the LDL receptor is the predominant receptor in remnant clearance.  相似文献   

7.
Differences in affinity of human apolipoprotein E (apoE) isoforms for the low density lipoprotein receptor (LDLR) are thought to result in the differences in lipid metabolism observed in humans with different APOE genotypes. Mice expressing three common human apoE isoforms, E2, E3, and E4, in place of endogenous mouse apoE were used to investigate the relative roles of apoE isoforms in LDLR- and non-LDLR-mediated very low density lipoprotein (VLDL) clearance. While both VLDL particles isolated from mice expressing apoE3 and apoE4 bound to mouse LDLR with affinity and Bmax similar to VLDL containing mouse apoE, VLDL with apoE2 bound with only half the Bmax. In the absence of the LDLR, all lines of mice expressing human apoE showed dramatic increases in VLDL cholesterol and triglycerides (TG) compared to LDLR knockout mice expressing mouse apoE. The mechanism of the hyperlipidemia in mice expressing human apoE isoforms is due to impairment of non-LDL-receptor-mediated VLDL clearance. This results in the severe atherosclerosis observed in mice expressing human apoE but lacking the LDLR, even when fed normal chow diet. Our data show that defects in LDLR independent pathway(s) are a potential factor that trigger hyperlipoproteinemia when the LDLR pathway is perturbed, as in E2/2 mice.  相似文献   

8.
9.
Apolipoprotein E (apoE) plays a key role in the receptor-mediated uptake of lipoproteins by the liver and therefore in regulating plasma levels of lipoproteins. ApoE may also facilitate hepatic secretion of very low density lipoprotein (VLDL) triglyceride (TG). We directly tested the hypothesis that reconstitution of hepatic apoE expression in adult apoE-deficient mice by gene transfer would acutely enhance VLDL-TG production and directly compared the three major human apoE isoforms using this approach. Second generation recombinant adenoviruses encoding the three major isoforms of human apoE (E2, E3, and E4) or a control virus were injected intravenously into apoE-deficient mice, resulting in acute expression of the apoE isoforms in the liver. Despite the expected decreases in total and VLDL cholesterol levels, apoE expression was associated with increased total and VLDL triglyceride levels (E2 > E4 > E3). The increase in TG levels significantly correlated with plasma apoE concentrations. In order to determine whether acute apoE expression influenced the rate of VLDL-TG production, additional experiments were performed. Three days after injection of adenoviruses, Triton WR1339 was injected to block lipolysis of TG-rich lipoproteins and VLDL-TG production rates were determined. Mice injected with control adenovirus had a mean VLDL-TG production rate of 74 +/- 7 micromol/h/kg. In contrast, VLDL-TG production rates in apoE-expressing mice were 363 +/- 162 micromol/h/kg, 286 +/- 175 micromol/h/kg, and 300 +/- 84 micromol/h/kg for apoE2, apoE3, and apoE4, respectively. The VLDL-TG production rates in apoE-expressing mice were all significantly greater than in control mice but were not significantly different from each other. In summary, acute expression of all three human apoE isoforms in livers of apoE-deficient mice markedly increased VLDL-TG production to a similar degree, consistent with the concept that apoE plays an important role in facilitating hepatic VLDL-TG production in an isoform-independent manner.  相似文献   

10.
ApoE-deficient mice on low fat diet show hepatic triglyceride accumulation and a reduced very low density lipoprotein (VLDL) triglyceride production rate. To establish the role of apoE in the regulation of hepatic VLDL production, the human APOE3 gene was introduced into apoE-deficient mice by cross-breeding with APOE3 transgenics (APOE3/apoe-/- mice) or by adenoviral transduction. APOE3 was expressed in the liver and, to a lesser extent, in brain, spleen, and lung of transgenic APOE3/apoe-/- mice similar to endogenous apoe. Plasma cholesterol levels in APOE/apoe-/- mice (3.4 +/- 0.5 mM) were reduced when compared with apoe-/- mice (12.6 +/- 1.4 mM) but still elevated when compared with wild type control values (1.9 +/- 0.1 mM). Hepatic triglyceride accumulation in apoE-deficient mice was completely reversed by introduction of the APOE3 transgene. The in vivo hepatic VLDL-triglyceride production rate was reduced to 36% of control values in apoE-deficient mice but normalized in APOE3/apoe-/- mice. Hepatic secretion of apoB was not affected in either of the strains. Secretion of (3)H-labeled triglycerides synthesized from [(3)H]glycerol by cultured hepatocytes from apoE-deficient mice was four times lower than by APOE3/apoe-/- or control hepatocytes. The average size of secreted VLDL particles produced by cultured apoE-deficient hepatocytes was significantly reduced when compared with those of APOE3/apoe-/- and wild type mice. Hepatic expression of human APOE3 cDNA via adenovirus-mediated gene transfer in apoE-deficient mice resulted in a reduction of plasma cholesterol depending on plasma apoE3 levels. The in vivo VLDL-triglyceride production rate in these mice was increased up to 500% compared with LacZ-injected controls and correlated with the amount of apoE3 per particle. These findings indicate a regulatory role of apoE in hepatic VLDL-triglyceride secretion, independent from its role in lipoprotein clearance.  相似文献   

11.
We have used adenovirus-mediated gene transfer in apolipoprotein (apo)E−/− mice to elucidate the molecular etiology of a dominant form of type III hyperlipoproteinemia (HLP) caused by the R142C substitution in apoE4. It was found that low doses of adenovirus expressing apoE4 cleared cholesterol, whereas comparable doses of apoE4[R142C] greatly increased plasma cholesterol, triglyceride, and apoE levels, caused accumulation of apoE in VLDL/IDL/LDL region, and promoted the formation of discoidal HDL. Co-expression of apoE4[R142C] with lecithin cholesterol acyltransferase (LCAT) or lipoprotein lipase (LPL) in apoE−/− mice partially corrected the apoE4[R142C]-induced dyslipidemia. High doses of C-terminally truncated apoE4[R142C]-202 partially cleared cholesterol in apoE−/− mice and promoted formation of discoidal HDL. The findings establish that apoE4[R142C] causes accumulation of apoE in VLDL/IDL/LDL region and affects in vivo the activity of LCAT and LPL, the maturation of HDL, and the clearance of triglyceride-rich lipoproteins. The prevention of apoE4[R142C]-induced dyslipidemia by deletion of the 203-299 residues suggests that, in the full-length protein, the R142C substitution may have altered the conformation of apoE bound to VLDL/IDL/LDL in ways that prevent triglyceride hydrolysis, cholesterol esterification, and receptor-mediated clearance in vivo.  相似文献   

12.
LDL receptor-deficient (LDLR(-/-)) mice fed a Western diet exhibit severe hyperlipidemia and develop significant atherosclerosis. Apolipoprotein E (apoE) is a multifunctional protein synthesized by hepatocytes and macrophages. We sought to determine effect of macrophage apoE deficiency on severe hyperlipidemia and atherosclerosis. Female LDLR(-/-) mice were lethally irradiated and reconstituted with bone marrow from either apoE(-/-) or apoE(+/+) mice. Four weeks after transplantation, recipient mice were fed a Western diet for 8 weeks. Reconstitution of LDLR(-/-) mice with apoE(-/-) bone marrow resulted in a slight reduction in plasma apoE levels and a dramatic reduction in accumulation of apoE and apoB in the aortic wall. Plasma lipid levels were unaffected when mice had mild hyperlipidemia on a chow diet, whereas IDL/LDL cholesterol levels were significantly reduced when mice developed severe hyperlipidemia on the Western diet. The hepatic VLDL production rate of mice on the Western diet was decreased by 46% as determined by injection of Triton WR1339 to block VLDL clearance. Atherosclerotic lesions in the proximal aorta were significantly reduced, partially due to reduction in plasma total cholesterol levels (r=0.56; P<0.0001). Thus, macrophage apoE-deficiency alleviates severe hyperlipidemia by slowing hepatic VLDL production and consequently reduces atherosclerosis in LDLR(-/-) mice.  相似文献   

13.
To identify the residues in the carboxyl-terminal region 260-299 of human apolipoprotein E (apoE) that contribute to hypertriglyceridemia, two sets of conserved, hydrophobic amino acids between residues 261 and 283 were mutated to alanines, and recombinant adenoviruses expressing these apoE mutants were generated. Adenovirus-mediated gene transfer of apoE4-mut1 (apoE4 (L261A, W264A, F265A, L268A, V269A)) in apoE-deficient mice (apoE(-/-)) corrected plasma cholesterol levels and did not cause hypertriglyceridemia. In contrast, gene transfer of apoE4-mut2 (apoE4 (W276A, L279A, V280A, V283A)) did not correct hypercholesterolemia and induced mild hypertriglyceridemia. ApoE-induced hyperlipidemia was corrected by co-infection with a recombinant adenovirus expressing human lipoprotein lipase. Both apoE4 mutants caused only a small increase in hepatic very low density lipoprotein-triglyceride secretion. Density gradient ultracentrifugation analysis of plasma and electron microscopy showed that wild-type apoE4 and apoE4-mut2 displaced apoA-I from the high density lipoprotein (HDL) region and promoted the formation of discoidal HDL, whereas the apoE4-mut1 did not displace apoA-I from HDL and promoted the formation of spherical HDL. The findings indicate that residues Leu-261, Trp-264, Phe-265, Leu-268, and Val-269 of apoE are responsible for hypertriglyceridemia and also interfere with the formation of HDL. Substitutions of these residues by alanine provide a recombinant apoE form with improved biological functions.  相似文献   

14.
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.  相似文献   

15.
Genetic association of apolipoprotein E with age-related macular degeneration.   总被引:20,自引:1,他引:19  
Age-related macular degeneration (AMD) is the most common geriatric eye disorder leading to blindness and is characterized by degeneration of the neuroepithelium in the macular area of the eye. Apolipoprotein E (apoE), the major apolipoprotein of the CNS and an important regulator of cholesterol and lipid transport, appears to be associated with neurodegeneration. The apoE gene (APOE) polymorphism is a strong risk factor for various neurodegenerative diseases, and the apoE protein has been demonstrated in disease-associated lesions of these disorders. Hypothesizing that variants of APOE act as a potential risk factor for AMD, we performed a genetic-association study among 88 AMD cases and 901 controls derived from the population-based Rotterdam Study in the Netherlands. The APOE polymorphism showed a significant association with the risk for AMD; the APOE epsilon4 allele was associated with a decreased risk (odds ratio 0.43 [95% confidence interval 0.21-0. 88]), and the epsilon2 allele was associated with a slightly increased risk of AMD (odds ratio 1.5 [95% confidence interval 0.8-2. 82]). To investigate whether apoE is directly involved in the pathogenesis of AMD, we studied apoE immunoreactivity in 15 AMD and 10 control maculae and found that apoE staining was consistently present in the disease-associated deposits in AMD-maculae-that is, drusen and basal laminar deposit. Our results suggest that APOE is a susceptibility gene for AMD.  相似文献   

16.
The ε4 allele of the gene that encodes apolipoprotein E (APOE4) is the greatest genetic risk factor for Alzheimer''s disease (AD), while APOE2 reduces AD risk, compared to APOE3. The mechanism(s) underlying the effects of APOE on AD pathology remains unclear. In vivo, dendritic spine density is lower in APOE4-targeted replacement (APOE-TR) mice compared with APOE2- and APOE3-TR mice. To investigate whether this apoE4-induced decrease in spine density results from alterations in the formation or the loss of dendritic spines, the effects of neuron age and apoE isoform on the total number and subclasses of spines were examined in long-term wild-type neurons co-cultured with glia from APOE2-, APOE3- and APOE4-TR mice. Dendritic spine density and maturation were evaluated by immunocytochemistry via the presence of drebrin (an actin-binding protein) with GluN1 (NMDA receptor subunit) and GluA2 (AMPA receptor subunit) clusters. ApoE isoform effects were analyzed via a method previously established that identifies phases of spine formation (day-in-vitro, DIV10–18), maintenance (DIV18–21) and loss (DIV21–26). In the formation phase, apoE4 delayed total spine formation. During the maintenance phase, the density of GluN1+GluA2 spines did not change with apoE2, while the density of these spines decreased with apoE4 compared to apoE3, primarily due to the loss of GluA2 in spines. During the loss phase, total spine density was lower in neurons with apoE4 compared to apoE3. Thus, apoE4 delays total spine formation and may induce early synaptic dysfunction via impaired regulation of GluA2 in spines.  相似文献   

17.
Human apolipoprotein E (apoE) isoforms may differentially modulate amyloid-β (Aβ) levels. Evidence suggests physical interactions between apoE and Aβ are partially responsible for these functional effects. However, the apoE/Aβ complex is not a single static structure; rather, it is defined by detection methods. Thus, literature results are inconsistent and difficult to interpret. An ELISA was developed to measure soluble apoE/Aβ in a single, quantitative method and was used to address the hypothesis that reduced levels of soluble apoE/Aβ and an increase in soluble Aβ, specifically oligomeric Aβ (oAβ), are associated with APOE4 and AD. Previously, soluble Aβ42 and oAβ levels were greater with APOE4 compared with APOE2/APOE3 in hippocampal homogenates from EFAD transgenic mice (expressing five familial AD mutations and human apoE isoforms). In this study, soluble apoE/Aβ levels were lower in E4FAD mice compared with E2FAD and E3FAD mice, thus providing evidence that apoE/Aβ levels isoform-specifically modulate soluble oAβ clearance. Similar results were observed in soluble preparations of human cortical synaptosomes; apoE/Aβ levels were lower in AD patients compared with controls and lower with APOE4 in the AD cohort. In human CSF, apoE/Aβ levels were also lower in AD patients and with APOE4 in the AD cohort. Importantly, although total Aβ42 levels decreased in AD patients compared with controls, oAβ levels increased and were greater with APOE4 in the AD cohort. Overall, apoE isoform-specific formation of soluble apoE/Aβ modulates oAβ levels, suggesting a basis for APOE4-induced AD risk and a mechanistic approach to AD biomarkers.  相似文献   

18.
Progressive dysfunction and death of neurons in Alzheimer's dementia is enhanced in patients carrying one or more APOE4 alleles who also display increased presence of oxidative stress markers. Modulation of oxidative stress is a nontraditional and physiologically relevant immunomodulatory function of apolipoprotein E (apoE). Stimulated peritoneal macrophages from APOE-transgenic replacement (APOE-TR) mice expressing only human apoE3 or human apoE4 protein isoforms were utilized as mouse models to investigate the role of apoE protein isoforms and gender in the regulation of oxidative stress. Macrophages from male APOE4/4-TR mice produced significantly higher levels of nitric oxide than from male APOE3/3-TR mice, while macrophages from female APOE3/3-TR and female APOE4/4-TR mice produced the similar levels of nitric oxide. Primary cultures of microglial cells of APOE4 transgenic mice also produced significantly more nitric oxide than microglia from APOE3 transgenic mice. These data suggest a potentially novel mechanism for gender-dependent and apoE isoform-dependent immune responses that parallel the genetic susceptibility of APOE4 carriers for the development of Alzheimer's disease.  相似文献   

19.
It has long been postulated that apolipoprotein E (apoE) may play a role in lipid metabolism in the brain. However, direct evidence that apoE plays such a role is lacking. We investigated whether apoE isoforms influence lipid content in the brain. We compared the brains of wild-type mice to apoE knockout (-/-) and human apoE3 and apoE4 transgenic mice and compared cerebrospinal fluid (CSF) of humans with different apoE isoforms. We found that there was no effect of apoE on the content of multiple phospholipids, sphingolipids, and cholesterol. There was, however, a marked effect of apoE on the sulfatide (ST) content in both the brain and CSF. The sulfatide mass in hippocampus and cortex of apoE knockout mice was found to be 61 and 114 mol% higher than wild-type mice counterparts at 12 months of age. In contrast, the sulfatide content in brain tissues from human apoE4-expressing mice was approximately 60% less than those found in wild-type mice of the same age. The ST mass in human CSF was significantly dependent on the APOE genotypes of the subjects. Examination of potential sulfatide carrier(s) in human CSF demonstrated that sulfatides are specifically associated with apoE-containing high density lipoproteins, suggesting that sulfatide levels in the central nervous system (CNS) are likely to be directly modulated by the same metabolic pathways that regulate levels of apoE-containing CNS lipoproteins. This novel role for apoE in the CNS may provide new insights into the connection of apoE with Alzheimer's disease and poor recovery after brain injury.  相似文献   

20.
Apolipoprotein E (apoE, protein; APOE, gene) is important in lipoprotein metabolism. Three isoforms, apoE2 (Cys112 Cys158), apoE3 (Cys112 Arg158), and apoE4 (Arg112 Arg158), are present in the general population. This report investigates the frequency distribution of apoE isoforms and the association of APOE genotypes with plasma lipid profile and coronary heart disease (CHD) in a population of Taiwan. ApoE isoforms were determined genetically by polymerase chain reaction and HhaI restriction enzyme digestion in control and coronary heart disease (CHD) patients. Plasma lipid and lipoprotein concentrations were also determined. The control group exhibited frequencies of 84.6% APOE3, 7.9% APOE4, 7.5% APOE2, 70.6% APOE3E3, 14.4% APOE3E4, 13.6% APOE2E3, and 1.4% APOE2E4. Comparable frequencies were observed in the CHD group. In both APOE2 carrier and APOE3E3 groups, the CHD patients expressed abnormal lipid profiles while the control group expressed normal lipid profiles. The APOE4 carriers, however, expressed abnormal lipid profiles in both normal control and CHD groups. Extremely high apoE levels in the hypertriglyceridemic group (TG > 400 mg/dL) seemed to be undesirable and were often observed in CHD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号