首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Volumetric mass transfer coefficients (kLa) were measured by a steady state method in a twin bubble column to characterize the coalescence behaviour of the medium. Employing Hansenula polymorpha cultivation broths, kLa values were compared with those measured in model media in the presence and absence of antifoam agents. The ratio of the volumetric mass transfer coefficient in the system investigated to that in water, , was employed to characterize the cultivation medium.Symbols a Specific gas/liquid interfacial area with regard to the liquid volume in reactor - de Dynamical equilibrium bubble diameter - dH Perforated plate hole diameter - dp Primary bubble diameter - dS Sauter bubble diameter - Fv Liquid feed rate - H Bubbling layer height - kL Gas/liquid mass transfer coefficient - kLa Volumetric mass transfer coefficient - m kLa/(kLa)r coalescence index - mcorr Corrected coalescence index [Eq. (3)] - OTR Oxygen transfer rate - PO Dissolved O2-partial pressure in BS2 - P1 Dissolved O2-partial pressure in BS1 - PO PO/PS relative oxygen saturation in BS2 - P1 P1/PS relative oxygen saturation in BS1 - PS Saturation dissolved oxygen partial pressure - Rc dnB/dt coalescence rate - S Substrate concentration - tF Time since the beginning of the cultivation - X Biomass concentration - V1 Liquid volume in BS1 - wSG Superficial gas velocity in BS1 - G Gas holdup in BS1 - 1 V1/Fv mean liquid residence time in BS1 - BS1 O2 absorber column - BS2 O2 desorber column - D Desmophen (antifoam agent) - NS Nutrient salt solution (Table 1)  相似文献   

2.
Summary In the presence of protein, Hansenula polymorpha cultivation medium exhibits a maximum volumetric mass transfer coefficient, kLa, as function of the employed antifoam agents (soy oil and Desmophen 3600). With diminishing superficial gas velocity this maximum disappeas.Symbols EG Relative gas holdup - kLa Volumetric mass transfer coefficient (s–1) - wSL Superficial liquid velocity (cm s–1) - wSG Superficial gas velocity (cm s–1)  相似文献   

3.
Summary Hansenula polymorpha was cultured for long periods in 254 cm high single and three-stage countercurrent tower loop reactors 20 cm in diameter using ethanol as a substrate in the absence and presence of antifoam agents (Desmophen 3600 and/or soy oil). In the absence of antifoam agents in the three-stage column, much higher volumetric mass transfer coefficients were attained than in the corresponding single-stage column. The cell productivity in the former, however, was only slightly higher than in the single-stage column due to considerable enrichment of the cells in the foam and nonuniform cell concentration distribution in the three-stage column. In the presence of antifoam agents the three-stage column has a higher cell productivity, OTR, kL a and a lower specific energy requirement with regard to the absorbed oxygen and/or produced cell mass than the single stage column. The reactor performance is especially high if the bubbling layer height is reduced to 20 cm. Soy oil has considerably less foam eliminating property than Desmophen. Since the soy oil is metabolized by the yeast, large amounts are needed to operate these reactors.  相似文献   

4.
The influence of three well-known antifoaming agents (polypropylene glycol, silicone and soybean oil) on gas-liquid mass transfer in stirred tanks is studied, both in model and in fermentation media. The effect of antifoam concentration, ionic strength, viscosity, agitation speed and gas flow rate are investigated. It is found that antifoam addition at low concentrations markedly decreases the gas-liquid volumetric mass transfer coefficient, kLa, for the three antifoam agents tested. Although the major effect is on the film coefficient kL, some effect is also detected on the specific area, a. It is found that the influence of viscosity and antifoam addition are not cumulative: each tends to attenuate the other's effect on mass transfer. Both for silicone and for soybean oil, but not for PPG in the concentration range studied, there is an antifoam concentration above which further antifoam addition starts to improve kLa.  相似文献   

5.
Decolourisation of the azo dye Reactive Black 5 by Geotrichum sp. CCMI 1019 was studied using stirred tank reactors (STR) and two types of bubble columns (porous plate (PP) bubble column and aeration tube (AT) bubble column). For the bubble columns, the kLa increased with the gas fractional hold-up (εG) and the aeration rate. A linear relationship between εG and superficial gas velocity was obtained for all reactors. At same aeration rates, the PP bubble columns showed higher kLa and hold-up values than the AT bubble column. In the STRs, large and dense aggregates were formed which adhered to surfaces whereas bubble columns gave smaller and less compact pellets.

Manganese peroxidase and laccase were detected in the extracellular media in all reactors. However, laccase was only detected after the onset of decolourisation, suggesting that additional enzymes may be involved. Mn peroxidase activity was detected (about 46 U/ml) in both the STRs and AT bubble columns but higher values (110 U/ml) were obtained with the PP bubble columns.

Out of the three reactor systems studied, the AT bubble columns gave the most favourable results for Reactive Black 5 decolourisation. Rapid and complete colour removal was obtained throughout the visible spectrum. Bubble columns are simple in design as well as operation and may be useful for the bioremediation of textile wastewater.  相似文献   

6.
Summary Experimental studies on the effect of antifoam agents on the performance of bubble columns with non-Newtonian fluids have been conducted. It is found that the gas hold-up and volumetric mass transfer coefficient in the case of water were reduced due to the addition of antifoam agents. It was found that this decrease in volumetric mass trasfer coefficient is substantial but in the aqueous solutions of polymers the effect becomes weaker as the concentration of polymers becomes higher. When the concentration of polymers became higher than a certain value, the volumetric mass transfer coefficient in the aqueous solutions of polymers with antifoam agents was higher than that without antifoam agents.Nomenclature a Specific surface area, 1/m - D c Column diameter, m - d max Diameter of the largest bubble stable against breakup, m - d min Diameter of the smallest bubble stable against coalescence, m - g Gravitational acceleration, m/s2 - H l Clear liquid height, m - h Rupture thickness of the liquid film, m - K Consistency index in a power-law model, Pa·s n - k l Liquid-phase mass transfer coefficient, m/s - n Flow index in a power-law model - u sg Superficial gas velocity, m/s Greek letters Shear rate, 1/s - Gas hold-up - Energy dissipation per unit mass, m2/s3 - Viscosity, Pa·s - p Density, kg/m3 - Surface tension, N/m - Shear stress-Pa  相似文献   

7.
The gas phase holdup and mass transfer characteristics of carboxymethyl cellulose (CMC) solutions in a bubble column having a radial gas sparger have been determined and a new flow regime map has been proposed. The gas holdup increases with gas velocity in the bubbly flow regime, decreases in the churn-turbulent flow regime, and increases again in the slug flow regime. The volumetric mass transfer coefficient (k La) significantly decreases with increasing liquid viscosity. The gas holdup and k La values in the present bubble column of CMC solutions are found to be much higher than those in bubble columns or external-loop airlift columns with a plate-type sparger. The obtained gas phase holdup ( g) and k La data have been correlated with pertinent dimensionless groups in both the bubbly and the churn-turbulent flow regimes.List of Symbols a m–1 specific gas-liquid interfacial area per total volume - A d m2 cross-sectional area of downcomer - A r m2 cross-sectional area of riser - d b m individual bubble diameter - d vs m Sauter mean bubble diameter - D c m column diameter - D L m2/s oxygen diffusivity in the liquid - Fr Froude number, U g/(g Dc)1/2 - g m/s2 gravitational acceleration - G a Galileo number, gD c 3 2/2 app - H a m aerated liquid height - H c m unaerated liquid height - K Pa · sn fluid consistency index - k L a s–1 volumetric mass transfer coefficient - n flow behavior index - N i number of bubbles having diameter d bi - Sc Schmidt number, app/( D L) - Sh Sherwood number, k L a D c 2 /DL - U sg m/s superficial gas velocity - U gr m/s superficial riser gas velocity - V a m3 aerated liquid volume - V c m3 unaerated liquid volume - N/m surface tension of the liquid phase - g gas holdup - app Pa · s effective viscosity of non-Newtonian liquid - kg/m3 liquid density - ý s–1 shear rate - Pa shear stress  相似文献   

8.
The effect of factors such as gas recycle rate, bubble size, presence of acetone, and ethanol in the solution/broth were investigated in order to remove butanol from model solution or fermentation broth (also called acetone butanol ethanol or ABE or solvents). Butanol (8 g L–1, model solution, Fig. 2) stripping rate was found to be proportional to the gas recycle rate. In the bubble size range attempted (<0.5 and 0.5–5.0 mm), the bubble size did not have any effect on butanol removal rate (Fig. 3, model solution). In Clostridium beijerinckii fermentation, ABE productivity was reduced from 0.47 g L–1 h–1 to 0.25 g L–1 h–1 when smaller (<0.5 mm) bubble size was used to remove ABE (Fig. 4, results reported as butanol/ABE concentration). The productivity was reduced as a result of addition of an excessive amount of antifoam used to inhibit the production of foam caused by the smaller bubbles. This suggested that the fermentation was negatively affected by antifoam.Mention of trade names of commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

9.
The influence of antifoam agents on the liquid-phase mass transfer coefficient in stirred tank and bubble column bioreactors is studied. A physical model based on a surface-renewal concept and additional data in 40-dm3 bubble column bioreactor are presented. Comparisons between the physical model and the data indicate that the model predicts the maximum influence of antifoam agents on the liquid-phase mass transfer coefficient.List of Symbols a 1/m specific surface area - D m2/s diffusivity - D c m bubble column diameter - d vs m bubble diameter - g m/s2 gravitational acceleration - k L m/s liquid-phase mass transfer coefficient - k LO m/s liquid-phase mass transfer coefficient for clean surface - N 1/s impeller speed - Sc Schmidt number (v/D) - U sg m/s superficial gas velocity Greek Letters W/kg energy dissipation rate per unit mass - g gas hold-up - Pa s viscosity - v m2/s kinematic viscosity - kg/m3 density - N/m surface tension  相似文献   

10.
Starting with the definition of the process term kLa, steady state and nonsteady state measuring methods are described for its determination. Then the sorption characteristics for mixing vessels and for bubble columns are presented with respect to the coalescence behaviour of the system treated. They permit the scale-up of these devices and the optimization of their process parameters for a required oxygen uptake. In addition to the sorption characteristics for the given system the knowledge of the flooding point and the power characteristics is necessary for the lay-out of mixing vessels, whereas in the case of bubble columns the gas hold-up characteristic needs to be known.  相似文献   

11.
Pluronic F68 is one of the most used shear protecting additives in cell culture cultivations. It is well known from literature that such surface‐active surfactants lower the surface tension at the gas‐liquid interface, which influences the mass transfer. In this study, the effect of Pluronic F68 on oxygen mass transfer in aqueous solutions was examined. Therefore, the gassing in/gassing out method and bubble size measurements were used. At low concentrations of 0.02 g/L, a 50% reduction on mass transfer was observed for all tested spargers and working conditions. An explanation of the observed effects by means of Higbie's penetration or Dankwerts surface renewal theory was applied. It could be demonstrated that the suppressed movement of the bubble surface layer is the main cause for the significant drop down of the kLa‐values. For Pluronic F68 concentrations above 0.1 g/L, it was observed that it comes to changes in bubble appearance and bubble size strongly dependent on the sparger type. By using the bubble size measurement data, it could be shown that only small changes in mass transfer coefficient (kL) take place above the critical micelle concentration. Further changes on overall mass transfer at higher Pluronic F68 concentrations are mainly based on increasing of gas holdup and, more importantly, by increasing of the surface area available for mass transfer. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1278–1288, 2013  相似文献   

12.
Studies in tower reactors with viscous liquids on flow regime, effective shear rate, liquid mixing, gas holdup and gas/ liquid mass transfer (k La) are reviewed. Additional new data are reported for solutions of glycerol, CMC, PAA, and xanthan in bubble columns with diameters of 0.06, 0.14 and 0.30 m diameter. The wide variation of the flow behaviour index (1 to 0.18) allows to evaluate the effective shear rate due to the gas flow. New dimensionless correlations are developed based on the own and literature data, applied to predict k La in fermentation broths, and compared to other reactor types.List of Symbols a(a) m–1 specific interfacial area referred to reactor (liquid) volume - Bo Bond number (g D c 2 L/) - c L(c L * ) kmol m–3 (equilibrium) liquid phase oxygen concentration - C coefficient characterising the velocity profile in liquid slugs - C s m–1 coefficient in Eq. (2) - d B(dvs) m bubble diameter (Sauter mean of d B) - d 0 m diameter of the openings in the gas distributor plate - D c m column diameter - D L m2s–1 diffusivity - E L(EW) m2 s–1 dispersion coefficient (in water) - E 2 square relative error - Fr Froude number (u G/(g Dc)0.5) - g m s–2 gravity acceleration - Ga Gallilei number (g D c 3 L 2 / eff 2 ) - h m height above the gas distributor the gas holdup is characteristic for - k Pasn fluid consistency index (Eq. 1) - k L m s–1 liquid side mass transfer coefficient - k La(kLa) s–1 volumetric mass transfer coefficient referred to reactor (liquid) volume - L m dispersion height - n flow behaviour index (Eq. 1) - P W power input - Re liquid slug Reynolds number ( L(u G +u L) D c/eff) - Sc Schmidt number ( eff/( L D L )) - Sh Sherwood number (k La D c 2 /DL) - t s time - u B(usw) m s–1 bubble (swarm) rise velocity - u G(uL) m s–1 superficial gas (liquid) velocity - V(VL) m3 reactor (liquid) volume Greec Symbols W m–2 K–1 heat transfer coefficient - y(y eff) s–1 (effective) shear rate - G relative gas holdup - s relaxation time of viscoelastic liquid - L(eff) Pa s (effective) liquid viscosity (Eq. 1) - L kg m–3 liquid density - N/m surface tension  相似文献   

13.
For multiple-use bench scale and larger bioreactors, sintered stainless steel frit spargers are commonly used as microspargers. For bench-scale single-use bioreactors (SUBs), existing microspargers are sintered plastics, such as polyethylene. However, though plastics are readily sterilized by irradiation making them convenient for single use, these designs overlook surface energy properties of the materials of construction. For these sintered plastic spargers, forces at the water-air-surface interface cause bubble coalescence, leading to lower effective mass transfer, higher gas flow rates, and differing pCO2 profiles in cell culture. Alternative materials of construction were evaluated based on contact angle information and bubble formation observations. Sintered glass was chosen over thermoplastic polymers for higher surface wettability as described in the glass/water contact angle, its history as a commonly sintered material, and availability at costs suitable for single use applications. Glass sintered spargers and traditional stainless steel frit spargers were compared by porosity, bubble size, and kLa studies. Mass transfer (kLa) and cell culture performance equal or greater than a standard 20 μm stainless steel microsparger mass transfer efficiency was achieved by a glass frit sparger, of international porosity standard “P40” according to ISO 4793-80, which corresponds to a range of 16–40 μm.  相似文献   

14.
The effects of superficial gas velocity (Ugr), gas entrance velocity (ν), and bubble size on the growth of Tisochrysis lutea was investigated in 600-mL photobioreactors operated with airlift pumps. Superficial gas velocities, calculated from measured air flow rates, ranging from 7 to 93 mm s?1 were created using a 1.6-mm diameter syringe. We tested the effects of sparger velocity over a range of 2.48 to 73.4 m s?1 and the effects of bubble size by using two styles of air stones and an open glass pipette, which created a bubble sizes in the range of 0.5 to 5 mm. We calculated oxygen mass transfer coefficient, kLa, values for all experimental conditions. Cell growth increased linearly with increased superficial gas velocity and decreased with increased sparger velocity. Results indicated that smaller bubble size leads to some initial cell damage, but after time, the increased gas transfer as reflected by the kLa value produced higher growth than larger bubbles. Two mechanisms were observed to correlate with cell damage in T. lutea: increasing velocity at the sparger tip and bubble bursting at the surface. These results demonstrate a method to test sensitivity of T. lutea to aeration, which is important for the design of airlift systems.  相似文献   

15.
Optimization of a bioreactor design can be an especially challenging process. For instance, testing different bioreactor vessel geometries and different impeller and sparger types, locations, and dimensions can lead to an exceedingly large number of configurations and necessary experiments. Computational fluid dynamics (CFD), therefore, has been widely used to model multiphase flow in stirred-tank bioreactors to minimize the number of optimization experiments. In this study, a multiphase CFD model with population balance equations are used to model gas–liquid mixing, as well as gas bubble distribution, in a 50 L single-use bioreactor vessel. The vessel is the larger chamber in an early prototype of a multichamber bioreactor for mammalian cell culture. The model results are validated with oxygen mass transfer coefficient (kLa) measurements within the prototype. The validated model is projected to predict the effect of using ring or pipe spargers of different sizes and the effect of varying the impeller diameter on kLa. The simulations show that ring spargers result in a superior kLa compared to pipe spargers, with an optimum sparger-to-impeller diameter ratio of 0.8. In addition, larger impellers are shown to improve kLa. A correlation of kLa is presented as a function of both the reactor geometry (i.e., sparger-to-impeller diameter ratio and impeller-to-vessel diameter ratio) and operating conditions (i.e., Reynolds number and gas flow rate). The resulting correlation can be used to predict kLa in a bioreactor and to optimize its design, geometry, and operating conditions.  相似文献   

16.
Bioreactors are of interest for gas-to-liquid conversion of stranded or waste industrial gases, such as CO, CH4, or syngas. Process economics requires reduction of bioreactor cost and size while maintaining intense production via rapid delivery of gases to the liquid phase (i.e., high kLa). Here, we show a novel bioreactor design that outperforms all known technology in terms of gas transfer energy efficiency (kLa per power density) while operating at high kLa (i.e., near 0.8 s−1). The reactor design uses a micro-jet array to break feedstock gas into a downward microbubble flow. Hydrodynamic and surfactant measurements show the reactor's advanced performance arises from its bubble breakage mechanism, which limits fluid shear to a thin plane located at an optimal location for bubble breakage. Power dissipation and kL are shown to scale with micro-jet diameter rather than reactor diameter, and the micro-jet array achieves improved performance compared to classical impinging-jets, ejector, or U-loop reactors. The hydrodynamic mechanism by which the micro-jets break bubbles apart is shown to be shearing the bubbles into filaments then fragmentation by surface tension rather than “cutting in half” of bubbles. Guided by these hydrodynamic insights, strategies for industrial design are given. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2710, 2019  相似文献   

17.
Rates of CO2 desorption from fermentation broths under actual operating conditions were determined by measuring the CO2 partial pressure in the exit gas. The concentrations of CO2 physically dissolved in the broths were measured by the so-called tubing method. Values of kLa for CO2 desorption calculated from these values agreed well with the kLa values for oxygen absorption corrected for the difference in gas diffusivities. The dissolved CO2 concentration in the broth, which seems to bean important operating parameter, can easily be estimated from the CO2 partial pressure in the exit gas, a more easily measurable quantity, if the kLa value is known. For a given value of kLa, assumption of perfect mixing or plug flow in the gas phase made little difference in the calculated values of the dissolved CO2 concentration, indicating that the gas phase was probably in between perfect mixing and plug flow. In industrial fermentors, the CO2 partial pressure in the exit gas can practically be assumed to be in equilibrium with the dissolved CO2 concentration.  相似文献   

18.
Herein, we described a scale-up strategy focused on the dissolved carbon dioxide concentration (dCO2) during fed-batch cultivation of Chinese hamster ovary cells. A fed-batch culture process for a 2000-L scale stainless steel (SS) bioreactor was scaled-up from similarly shaped 200-L scale bioreactors based on power input per unit volume (P/V). However, during the 2000-L fed-batch culture, the dCO2 was higher compared with the 200-L scale bioreactor. Therefore, we developed an alternative approach by evaluating the kLa values of O2 (kLa[O2]) and CO2 [kLa(CO2)] in the SS bioreactors as a scale-up factor for dCO2 reduction. The kLa ratios [kLa(CO2)/kLa(O2)] were different between the 200-L and 2000-L bioreactors under the same P/V condition. When the agitation conditions were changed, the kLa ratio of the 2000-L scale bioreactor became similar and the P/V value become smaller compared with those of the 200-L SS bioreactor. The dCO2 trends in fed-batch cultures performed in 2000-L scale bioreactors under the modified agitation conditions were similar to the control. This kLa ratio method was used for process development in single-use bioreactors (SUBs) with shapes different from those of the SS bioreactor. The kLa ratios for the SUBs were evaluated and conditions that provided kLa ratios similar to the 200-L scale SS bioreactors were determined. The cell culture performance and product quality at the end of the cultivation process were comparable for all tested SUBs. Therefore, we concluded that the kLa ratio is a powerful scale-up factor useful to control dCO2 during fed-batch cultures.  相似文献   

19.
Summary A new, fast method is described to determine kLa either off-line, or on-line during animal-cell cultivation. Since it does not need the equilibrium concentration of oxygen in the liquid phase (C*), it is not required to await a new steady state. Furthermore, the results do not depend on the calibration value of the dissolved-oxygen probe. The method yielded accurate values for kLa, both for an oxygen-consuming and a non-consuming system.Nomenclature C L Dissolved-oxygen concentration [mol·m-3] - C * C L in equilibrium with the oxygen concentration in the gas phase [mol·m-3] - C L, Equilibrium oxygen concentration at stationary conditions [mol·m-3] - kLa Volumetric oxygen transfer coefficient [s-1] - r Specific oxygen consumption of biomass [mol·cell-1·s-1] - X Cell concentration [cells·m-3] - t Time [s] - Noise of dissolved-oxygen probe [mol·m-3] - Absolute error of kLa-measurement [s-1]  相似文献   

20.
Summary The aeration performance of two venturi aeration reactors (operating volumes 381 and 251) was studied for an air-water system. It was found that the mass transfer coefficient (k la) could be described in terms of the superficial gas velocity (V s) alone by the simple expressionk La=aV infb supS with constantsa=0.313,b=0.579 for the 38-1 reactor anda=0.214,b=0.534 for the 25-1 reactor. A similar relationship was obeyed when the 38-1 reactor was aerated with a diffuser tile (a=17.0,b=1.52). A linear relationship betweenk La and gas hold-up was observed for the 38-1 reactor with both venturi and diffuser aeration. The 25-1 reactor was used successfully for the thermophilic aerobic digestion of sewage sludge. A mean sludge temperature rise of 30°C was observed. Chemical oxygen demand, pH, and total solids content of the digested sludge differed significantly from the feed sludge and were similar to values obtained for full-scale thermophilic aerobic digestion. No significant differences between inorganic solids content, dissolved oxygen concentration, or redox potential were observed between feed and digested sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号