首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was traditionally accomplished by random mutagenesis, a detailed understanding of cellulase regulation can only be gained using recombinant technologies.  相似文献   

2.

Objectives

To evaluate the potential of enzyme cocktails produced by five filamentous fungi to supplement the industrial cellulase cocktail, Celluclast 1.5L, in order to improve the efficiency of saccharification.

Results

The fungi were cultivated on wheat bran and the resulting supernatants were combined with Celluclast in enzymatic hydrolysis experiments to test their ability to hydrolyze wheat bran and five cellulose-rich substrates. The supernatant showing the best performance was that from an Aspergillus niger cellulase mutant. The addition of β-glucosidase only to the Celluclast cocktail was not as beneficial.

Conclusion

Supplementing commercial cocktails with enzymes from carefully selected fungi may result in significantly more efficient saccharification of lignocellulosic materials. Furthermore, such an approach could lead to the identification of novel enzyme activities crucial for saccharification.
  相似文献   

3.
Summary The cellulase activities of six thermophilic fungi were compared. Although the thermophilic fungi grew at relatively high temperatures (>45°C) the optimum temperatures for assaying the various cellulase activities were only slightly higher than the optimum temperatures for the mesophilic fungi, Trichoderma harzianum. Over prolonged incubation (> 24 h) the thermophilic strains demonstrated a higher hydrolytic potential as a result of the greater thermostability of the cellulase components. Although the extracellular cellulase activities had similar pH and temperature optima, in some cases the thermostability of the extracellular components were considerably lower.  相似文献   

4.

Background  

A temperature limited fed-batch (TLFB) technique is described and used for Pichia pastoris Mut+ strain cultures and compared with the traditional methanol limited fed-batch (MLFB) technique. A recombinant fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A and lipase B from Candida antarctica (CALB), was produced and secreted by this strain.  相似文献   

5.

Background  

The filamentous fungus T. reesei effectively degrades cellulose and is known to produce various cellulolytic enzymes such as β-glucosidase, endoglucanase, and cellobiohydrolase. The expression levels of each cellulase are controlled simultaneously, and their ratios and synergetic effects are important for effective cellulose degradation. However, in recombinant Saccharomyces cerevisiae, it is difficult to simultaneously control many different enzymes. To construct engineered yeast with efficient cellulose degradation, we developed a simple method to optimize cellulase expression levels, named cocktail δ-integration.  相似文献   

6.
Aims: The conversion of cheap cellulosic biomass to more easily fermentable sugars requires the use of costly cellulases. We have isolated a series of marine sponge‐derived fungi and screened these for cellulolytic activity to determine the potential of this unique environmental niche as a source of novel cellulase activities. Methods and Results: Fungi were isolated from the marine sponge Haliclona simulans. Phylogenetic analysis of these and other fungi previously isolated from H. simulans showed fungi from three phyla with very few duplicate species. Cellulase activities were determined using plate‐based assays using different media and sea water concentrations while extracellular cellulase activities were determined using 3,5‐dinitrosalicylic acid (DNSA)‐based assays. Total and specific cellulase activities were determined using a range of incubation temperatures and compared to those for the cellulase overproducing mutant Hypocrea jecorina QM9414. Several of the strains assayed produced total or relative endoglucanase activities that were higher than H. jecorina, particularly at lower reaction temperatures. Conclusions: Marine sponges harbour diverse fungal species and these fungi are a good source of endoglucanase activities. Analysis of the extracellular endoglucanase activities revealed that some of the marine‐derived fungi produced high endoglucanase activities that were especially active at lower temperatures. Significance and Impact of the Study: Marine‐derived fungi associated with coastal marine sponges are a novel source of highly active endoglucanases with significant activity at low temperatures and could be a source of novel cellulase activities.  相似文献   

7.
A complete cellulase from Penicillium pinophilum was evaluated for the hydrolysis of α-cellulose derived from steam exploded sugarcane bagasse and other cellulosic substrates. α-Cellulose at 1% substrate concentration was completely hydrolyzed by Penicillium cellulase within 3 h wherein at 10% the hydrolysis was 100% within 24 h with an enzyme loading of 10 FPU/g. The hydrolysate yielded glucose as major end product as analyzed by HPLC. Under similar conditions, hydrolysis of Sigmacell (microcrystalline cellulose), CP-123 (pulverized cellulose powder) and ball milled Solka Floc were 42%, 56% and 52%, respectively. Further the hydrolysis performance of Penicillium sp. cellulase is compared with Trichoderma reesei cellulase (AccelleraseTM 1000) from Genencore. The kinetics of hydrolysis with respect to enzyme and substrate concentration will be presented.  相似文献   

8.

Aims

To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus.

Methods and Results

The compounds were tested at a concentration of 100 μg ml?1 in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein‐supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti‐aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein‐amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti‐aflatoxigenic activity in the YES medium.

Conclusions

Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol‐related compounds against aflatoxigenic fungi.

Significance and Impact of the Study

Studies utilizing gossypol‐related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins.  相似文献   

9.

Aims

Hotspots of enzyme activity in soil strongly depend on carbon inputs such as rhizodeposits and root detritus. In this study, we compare the effect of living and dead Lupinus polyphyllus L. roots on the small-scale distribution of cellulase, chitinase and phosphatase activity in soil.

Methods

Soil zymography, a novel in situ method, was used to analyze extracellular cellulase, chitinase and phosphatase activity in the presence of i. living L. polyphyllus roots prior to shoot cutting and ii. dead/dying roots 10, 20 and 30 days after shoot cutting.

Results

After shoot cutting, cellulase and chitinase activities increased and were highest at the root tips. The areas of high cellulase and phosphatase activity extend up to 55 mm away from the root. Moreover, we observed microhotspots of cellulose, chitinase, and phosphatase activity up to 60 mm away from the next living root. The number and activity of microhotspots of chitinase activity was maximal 10 days after shoot cutting.

Conclusions

The study showed that young root detritus stimulates enzyme activities stronger than living roots. Soil zymography allowed identification of microhotspots of enzyme activity up to several cm away from living and dying roots, which most likely were caused by arbuscular mycorrhizal fungi.  相似文献   

10.

Background  

Paracoccidioides brasiliensis is a thermodimorphic fungus, the causative agent of paracoccidioidomycosis (PCM). Serine proteases are widely distributed and this class of peptidase has been related to pathogenesis and nitrogen starvation in pathogenic fungi.  相似文献   

11.
Liu HQ  Feng Y  Zhao DQ  Jiang JX 《Biodegradation》2012,23(3):465-472
Four fungal strains—Trichoderma viride, Aspergillus niger, Trichoderma koningii, and Trichoderma reesei—were selected for cellulase production using furfural residues and microcrystalline cellulose (MCC) as the substrates. The filter paper activity (FPA) of the supernatant from each fungus was measured, and the performance of the enzymes from different fungal strains was compared. Moreover, the individual activities of the three components of the cellulase system, i.e., β-glucosidase, endoglucanase, and exoglucanase were evaluated. T. koningii showed the highest activity (27.81 FPU/ml) on furfural residues, while T. viride showed an activity of 21.61 FPU/ml on MCC. The FPA of the crude enzyme supernatant from T. koningii was 30% higher on furfural residues than on MCC. T. koningii and T. viride exhibited high stability and productivity and were chosen for cellulases production. The crystallinity index (CrI) of the furfural residues varied after digested by the fungi. The results indicated differences in the functioning of the cellulase system from each fungus. In the case of T. koningii, T. reesei and T. viride, furfural residues supported a better environment for cellulase production than MCC. Moreover, the CrI of the furfural residues decreased, indicating that this material was largely digested by the fungi. Thus, our results suggest that it may be possible to use the cellulases produced from these fungi for the simultaneous saccharification and fermentation of lignocellulosic materials in ethanol production.  相似文献   

12.

Background  

The pathogenic fungus Fonsecaea pedrosoi constitutively produces the pigment melanin, an important virulence factor in fungi. Melanin is incorporated in the cell wall structure and provides chemical and physical protection for the fungus.  相似文献   

13.

Background  

Calcium is commonly involved as intracellular messenger in the transduction by plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi. Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal phytopathogens and are able to colonize plant roots. Early molecular events underlying their association with plants are relatively unknown.  相似文献   

14.

Background  

The origin of vertebrate retroviruses (Retroviridae) is yet to be thoroughly investigated, but due to their similarity and identical gag-pol (and env) genome structure, it is accepted that they evolve from Ty3/Gypsy LTR retroelements the retrotransposons and retroviruses of plants, fungi and animals. These 2 groups of LTR retroelements code for 3 proteins rarely studied due to the high variability – gag polyprotein, protease and GPY/F module. In relation to 3 previously proposed Retroviridae classes I, II and II, investigation of the above proteins conclusively uncovers important insights regarding the ancient history of Ty3/Gypsy and Retroviridae LTR retroelements.  相似文献   

15.
A laboratory scale study to evaluate the potentiality of filamentous fungi for the production of cellulolytic enzymes using palm oil mill effluent (POME) as a basal medium was initiated. A total of 25 filamentous fungi in which 16 filamentous fungi were isolated and purified from oil palm industrial residues and 9 strains from laboratory stock were screened using POME with 1% total suspended solids. Trichoderma reesei RUT C-30 was identified as a potential strain for cellulolytic enzyme production as compared to other genera of Aspergillus, Penicillum, Rhizopus, Phanerochaete, Trichoderma and basidiomycete groups. The results showed that T. reesei RUT C-30 gave the highest filter paper cellulase and carboxy methyl cellulase activity of 0.917 and 2.51 U/ml respectively at day 5 of fermentation. Other parameters such as growth formation, pH, filterability and total biosolids were observed to evaluate the bioconversion process.  相似文献   

16.

Background  

Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair.  相似文献   

17.

Background  

The filamentous ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) is primarily known for its efficient enzymatic machinery that it utilizes to decompose cellulosic substrates. Nevertheless, the nature and transmission of the signals initiating and modulating this machinery are largely unknown. Heterotrimeric G-protein signaling represents one of the best studied signal transduction pathways in fungi.  相似文献   

18.

Background  

Reuterin produced from glycerol by Lactobacillus reuteri, a normal inhabitant of the human intestine, is a broad-spectrum antimicrobial agent. It has been postulated that reuterin could play a role in the probiotic effects of Lb. reuteri. Reuterin is active toward enteropathogens, yeasts, fungi, protozoa and viruses, but its effect on commensal intestinal bacteria is unknown. Moreover reuterin's mode of action has not yet been elucidated. Glutathione, a powerful antioxidant, which also plays a key role in detoxifying reactive aldehydes, protects certain bacteria from oxidative stress, and could also be implicated in resistance to reuterin.  相似文献   

19.

Background  

Phospholipase B (PLB) has been reported to be one of the virulence factors for human pathogenic fungi and has also been described as necessary for the early events in infection. Based on these data, we investigated the role of PLB in virulence and modulation of the alveolar pulmonary immune response during infection using an in-vitro model of host-pathogen interaction, i.e. Paracoccidioides brasiliensis yeast cells infecting alveolar macrophage (MH-S) cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号