首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Poly-3-hydroxyalkanoates (PHAs) are synthesized by many bacteria as intracellular storage material. The final step in PHA biosynthesis is catalyzed by two PHA polymerases (phaC) in Pseudomonas putida. The expression of these two phaC genes (phaC1 and phaC2)was studied in Escherichia coli, either under control of the native promoter or under control of an external promoter. It was found that the two phaC genes are not expressed in E. coli without an external promoter. During heterologous expression of phaC from Plac on a high copy number plasmid, a rapid reduction of the number of colony forming units was observed, especially for phaC2. It appears that the plasmid instability was partially caused by high-level production of PHA polymerase. Subsequently, tightly regulated phaC2 expression systems on a low copy number vector were applied in E. coli. This resulted in PHA yields of over 20 of total cell dry weight, which was 2 fold higher than that obtained from the system where phaC2 is present on a high copy number vector. In addition, the PHA monomer composition differed when different gene expression systems or different phaC genes were applied.  相似文献   

3.
This study investigated the apparent genetic redundancy in the biosynthesis of polyhydroxyalkanoates (PHAs) in the Rhodospirillum rubrum genome revealed by the occurrence of three homologous PHA polymerase genes (phaC1, phaC2, and phaC3). In vitro biochemical assays established that each gene product encodes PHA polymerase. A series of single, double, and triple phaC deletion mutants were characterized with respect to PHA production and growth capabilities on acetate or hexanoate as the sole carbon source. These analyses establish that phaC2 contributes the major capacity to produce PHA, even though the PhaC2 protein is not the most efficient PHA polymerase biocatalyst. In contrast, phaC3 is an insignificant contributor to PHA productivity, and phaC1, the PHA polymerase situated in the PHA biosynthetic operon, plays a minor role in this capability, even though both of these genes encode PHA polymerases that are more efficient enzymes. These observations are consistent with the finding that PhaC1 and PhaC3 occur at undetectable levels, at least 10-fold lower than that of PhaC2. The monomers in the PHA polymer produced by these strains establish that PhaC2 is responsible for the incorporation of the C5 and C6 monomers. The in vitro characterizations indicate that heteromeric PHA polymerases composed of mixtures of different PhaC paralogs are more efficient catalysts, suggesting that these proteins form complexes. Finally, the physiological role of PHA accumulation in enhancing the fitness of R. rubrum was indicated by the relationship between PHA content and growth capabilities of the genetically manipulated strains that express different levels of the PHA polymer.  相似文献   

4.

Background  

Polyhydroxyalkanoates (PHA), are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D) model of the Type II Pseudomonas sp. USM 4–55 PHA synthase 1 (PhaC1P.sp USM 4–55).  相似文献   

5.
The site-specific mutagenesis for PHA synthase PhaC2Ps1317 from Pseudomonas stutzeri 1317 was conducted for optimizing production of short-chain-length and medium-chain-length polyhydroxyalkanoates (scl-mcl PHA). Recombinant Ralstonia eutropha PHB-4 harboring double mutated phaC2 Ps1317 gene (phaC2 Ps QKST) produced 42 wt.% PHA content in the cell dry weight (CDW) with 93 mol% 3-hydroxybutyrate (HB) as monomer in the PHA copolymer. Compared to that of wild-type phaC2 Ps1317 , the higher PHA content indicated the effectiveness of the specific point mutations for improvement on PhaC2Ps1317 activity and PHA production. The physical characterization revealed that the PHA produced by the recombinant strain was scl-mcl PHA copolymers with molecular weights and polydispersity reasonable for practical applications. Recombinant R. eutropha PHB-4 containing mutated phaC2 Ps1317 termed phaC2 Ps QKST was demonstrated to be able to produce scl-mcl PHA copolymers consisting of even-numbered, odd-numbered, or a combination of even- and odd-numbered monomers covering the carbon chain lengths from C4 to C12 when related substrates were provided. Recombinant R. eutropha PHB-4 containing phaC2PsQKST could be used as a strain for production of copolymers consisting of dominated HB and medium-chain-length 3-hydroxyalkanoates (HA) with better application properties.  相似文献   

6.

Background  

Medium chain length (mcl-) polyhydroxyalkanoates (PHA) are synthesized by many bacteria in the cytoplasm as storage compounds for energy and carbon. The key enzymes for PHA metabolism are PHA polymerase (PhaC) and depolymerase (PhaZ). Little is known of how mcl-PHA accumulation and degradation are controlled. It has been suggested that overall PHA metabolism is regulated by the β-oxidation pathway of which the flux is governed by intracellular ratios of [NADH]/[NAD] and [acetyl-CoA]/[CoA]. Another level of control could relate to modulation of the activities of PhaC and PhaZ. In order to investigate the latter, assays for in vitro activity measurements of PhaC and PhaZ in crude cell extracts are necessary.  相似文献   

7.

   

Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases.  相似文献   

8.
Summary A purification procedure to obtain RNA polymerases I (or A) and II (or B) from Dictyostelium discoideum amoeba has been developed. The enzymes were solubilized from purified nuclei and separated by DEAF-Sephadex chromatography. RNA polymerases I and II were further purified by a second chromatography on DEAE-Sephadex followed by chromatographies on phosphocellulose and heparin-sepharose. The specific activities of purified RNA polymerases I and II are 92 units/ mg protein and 70 units/ mg protein, respectively. The subunit structure of both RNA polymerases were analyzed by polyacrylamide gel electrophoresis under denaturing conditions after glycerol gradient centrifugation of the enzymes. The putative subunits of RNA polymerase I have molecular weights of 180 000,125 000,43 000,40 000,34 000, 31 000, 25 000,19 000, 17 000 and 14 000. The putative subunits of RNA polymerase II have molecular weights of 200 000 (170 000), 130 000, 33 000, 25 000, 19 000, 17 000, 15 000, 13 000. There are three polypeptides with common molecular weight in Dictyostelium RNA polymerases I and 11. The subunit of 25 000 daltons of both enzymes has common immunological determinants with RNA polymerase II from crustacean Artemia.Abbreviations TLCK tosyl-lysine-chloromethyl-ketone - DPT diazophenylthioether  相似文献   

9.
Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that are synthesized by diverse bacteria. In this study, the synthesis of PHAs by the model aromatic-degrading strain Burkholderia xenovorans LB400 was analyzed. Twelve pha genes including three copies of phaC and five copies of the phasin-coding phaP genes are distributed among the three LB400 replicons. The phaC1ABR gene cluster that encodes the enzymes of the PHA anabolic pathway is located at chromosome 1 of strain LB400. During the growth of strain LB400 on glucose under nitrogen limitation, the expression of the phaC1, phaA, phaP1, phaR, and phaZ genes was induced. Under nitrogen limitation, PHA accumulation in LB400 cells was observed by fluorescence microscopy after Nile Red staining. GC-MS analyses revealed that the PHA accumulated under nitrogen limitation was poly(3-hydroxybutyrate) (PHB). LB400 cells grown on glucose as the sole carbon source under nitrogen limitation accumulated 40?±?0.96% PHB of the cell dry weight, whereas no PHA was observed in cells grown in control medium. The functionality of the phaC1 gene from strain LB400 was further studied using heterologous expression in a Pseudomonas putida KT40C1ZC2 mutant strain derived from P. putida KT2440 that is unable to synthesize PHAs. Interestingly, KT40C1ZC2[pVNC1] cells that express the phaC1 gene from strain LB400 were able to synthesize PHB (33.5% dry weight). This study indicates that B. xenovorans LB400 possesses a functional PHA synthetic pathway that is encoded by the pha genes and is capable of synthesizing PHB.  相似文献   

10.
Pseudomonas resinovorans phaC1 Pre and phaC2 Pre genes coding for poly(hydroxyalkanoate) (PHA) synthases were cloned by PCR and expressed in E. coli LS1298 (fadB). Repeat-unit composition analysis showed that -hydroxydecanoate (67–75 mol%) and -hydroxyoctanoate (25–33 mol%) are the major monomers of the PHA produced in cells grown on decanoate. Sequence analysis showed that the gene products of phaC1 Pre and phaC2 Pre had 61% identical (75% positive) amino-acid sequence matches, and both sequences contained a conserved /-hydrolase fold in the carboxy-terminal portion of the proteins. Switching the /-hydrolase folds of phaC1 Pre and phaC2 Pre yielded chimeric pha7 and pha8 genes that afforded PHA synthesis in E. coli LS1298. The repeat-unit compositions of PHA in cells containing pha7 and pha8 were similar to those found in transformants containing the parental genes. Deletion mutants of phaC1 Pre and phaC2 Pre that resulted in potential translational fusions also supported PHA synthesis with similar repeat-unit compositions. Chimeric genes obtained from the switching of fragments containing the /-hydrolase folds of phaC1 Pre and Ralstonia eutropha phbC did not direct the synthesis of PHA in transformed cells.  相似文献   

11.

Background  

Lysyl-tRNA synthetase (LysRS) is unique within the aminoacyl-tRNA synthetase family in that both class I (LysRS1) and class II (LysRS2) enzymes exist. LysRS1 enzymes are found in Archaebacteria and some eubacteria while all other organisms have LysRS2 enzymes. All sequenced strains of Bacillus cereus (except AH820) and Bacillus thuringiensis however encode both a class I and a class II LysRS. The lysK gene (encoding LysRS1) of B. cereus strain 14579 has an associated T box element, the first reported instance of potential T box control of LysRS expression.  相似文献   

12.
PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic activities of PHA synthase enzymes.  相似文献   

13.
A previously established improved two-phase reaction system has been applied to analyze the substrate specificities and polymerization activities of polyhydroxyalkanoate (PHA) synthases. We first analyzed the substrate specificity of propionate coenzyme A (CoA) transferase and found that 2-hydroxybutyrate (2HB) was converted into its CoA derivative. Then, the synthesis of PHA incorporating 2HB was achieved by a wild-type class I PHA synthase from Ralstonia eutropha. The PHA synthase stereoselectively polymerized (R)-2HB, and the maximal molar ratio of 2HB in the polymer was 9 mol%. The yields and the molecular weights of the products were decreased with the increase of the (R)-2HB concentration in the reaction mixture. The weight-average molecular weight of the polymer incorporating 9 mol% 2HB was 1.00 × 105, and a unimodal peak with polydispersity of 3.1 was observed in the GPC chart. Thermal properties of the polymer incorporating 9 mol% 2HB were analyzed by DSC and TG-DTA. T g, T m, and T d (10%) were observed at −1.1°C, 158.8°C, and 252.7°C, respectively. In general, major components of PHAs are 3-hydroxyalkanoates, and only engineered class II PHA synthases have been reported as enzymes having the ability to polymerize HA with the hydroxyl group at C2 position. Thus, this is the first report to demonstrate that wild-type class I PHA synthase was able to polymerize 2HB.  相似文献   

14.
We have isolated a mutant of Bacillussubtilis deficient in DNA polymerase I, denominated polA42, which shows a reduced ability to repair the damage to DNA by UV radiation, MMS and mitomycin C;the ability to perform recombination is not appreciably impaired.DEAE cellulose chromatography allows the separation of polymerases I and II from the parental strain;a simple procedure is also described which allows to separate rapidly the polymerases II and III of the mutant strain. The three separated polymerases have similar catalytic properties but they can be distinguished for their sensitivity to inhibitors: PCMB inhibits polymerases II and III but not polymerase I; HPUra inhibits only polymerase III. All three enzymes are unaffected by nalidixate. The DNA synthesis occurring in cells of the polA42 strain permeabilized with toluene is inhibited by nalidixate, whereas the synthesis occurring in polA+ toluenized cells is unaffected by the drug. The polA gene has been mapped by transduction and localized between the phe12 and argA3 genes.  相似文献   

15.

Background  

Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases), however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II.  相似文献   

16.

Background  

In mono- and eudicotyledonous plants, a small nuclear gene family (RpoT, RNA polymerase of the T3/T7 type) encodes mitochondrial as well as chloroplast RNA polymerases homologous to the T-odd bacteriophage enzymes. RpoT genes from angiosperms are well characterized, whereas data from deeper branching plant species are limited to the moss Physcomitrella and the spikemoss Selaginella. To further elucidate the molecular evolution of the RpoT polymerases in the plant kingdom and to get more insight into the potential importance of having more than one phage-type RNA polymerase (RNAP) available, we searched for the respective genes in the basal angiosperm Nuphar advena.  相似文献   

17.
18.
A polymerase chain reaction (PCR) protocol was developed for the specific detection of genes coding for type II polyhydroxyalkanoate (PHA) synthases. The primer-pair, I-179L and I-179R, was based on the highly conserved sequences found in the coding regions of Pseudomonas phaC1 and phaC2 genes. Purified genomic DNA or lysate of colony suspension can serve equally well as the target sample for the PCR, thus affording a simple and rapid screening of phaC1/C2-containing microorganisms. Positive samples yield a specific 540-bp PCR product representing partial coding sequences of the phaC1/C2 genes. Using the PCR method, P. corrugata 388 was identified for the first time as a medium-chain-length (mcl)-PHA producer. Electron microscopic study and PHA isolation confirmed the production of mcl-PHA in P. corrugata 388. The mcl-PHA of this organism has a higher molecular weight than that of similar polymers produced by other pseudomonads. Received: 16 August 1999 / Received revision: 23 December 1999 / Accepted: 4 January 2000  相似文献   

19.
20.
DNA-dependent RNA polymerases I, II, and III (EC 2.7.7.6) were isolated from Xenopus laevis ovaries. The soluble enzymes were precipitated with polyethyleneimine and subjected to chromatography on heparin-Sepharose, DEAE-Sephadex, and phosphocellulose. RNA polymerase I was subjected to an additional chromatographic step on CM-Sephadex. The procedure required 40 h and produced purified RNA polymerase forms IA, IIA, and III in yields of 5 to 40%. The specific activities of RNA polymerases IIA and III (on native DNA) were comparable to those reported from other eukaryotic sources, whereas that of form IA was severalfold greater than the specific activities reported for other purified class I RNA polymerases. The complex subunit compositions of chromatographically purified RNA polymerases IA, IIA, and III were distinct when analyzed by polyacrylamide gradient gel electrophoresis under denaturing conditions, although all three classes contained polypeptides with Mr = 29,000, 23,000, and 19,000. Antibodies prepared against RNA polymerase III showed common antigenic determinants within the class I, II, and III enzymes. The sites responsible for the cross-reaction are located, at least in part, on the common 29,000-dalton polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号