首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural runoff through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient runoff from plant nurseries and compares these to similar forest soils not exposed to nutrient runoff. Nursery runoff also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g−1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g−1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g−1 in soil slurries. The addition of PO4 (5 μg PO4-P g−1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forest soils.  相似文献   

2.
The influence of land use on potential fates of nitrate (NO3 ) in stream ecosystems, ranging from denitrification to storage in organic matter, has not been documented extensively. Here, we describe the Pacific Northwest component of Lotic Intersite Nitrogen eXperiment, phase II (LINX II) to examine how land-use setting influences fates of NO3 in streams. We used 24 h releases of a stable isotope tracer (15NO3-N) in nine streams flowing through forest, agricultural, and urban land uses to quantify NO3 uptake processes. NO3 uptake lengths varied two orders of magnitude (24–4247 m), with uptake rates (6.5–158.1 mg NO3-N m−2 day−1) and uptake velocities (0.1–2.3 mm min−1) falling within the ranges measured in other LINX II regions. Denitrification removed 0–7% of added tracer from our streams. In forest streams, 60.4 to 77.0% of the isotope tracer was exported downstream as NO3 , with 8.0 to 14.8% stored in wood biofilms, epilithon, fine benthic organic matter, and bryophytes. Agricultural and urban streams with streamside forest buffers displayed hydrologic export and organic matter storage of tracer similar to those measured in forest streams. In agricultural and urban streams with a partial or no riparian buffer, less than 1 to 75% of the tracer was exported downstream; much of the remainder was taken up and stored in autotrophic organic matter components with short N turnover times. Our findings suggest restoration and maintenance of riparian forests can help re-establish the natural range of NO3 uptake processes in human-altered streams.  相似文献   

3.
As a common pollutant, nitrite concentrations can approach 15 mg NO2-N L−1 in some aquatic systems. Microcystis aeruginosa blooms are common and widespread in eutrophic freshwater bodies. In this study, M. aeruginosa was exposed to nitrite concentrations ranging from 0 to 15 mg NO2-N L−1, and the responses of M. aeruginosa were investigated. The specific growth rates, maximum cell densities, light-saturated photosynthetic rates (Pm chla ), dark respiration rates (Rd chla ), and apparent photosynthetic efficiencies (αchla ) showed a significant decline with nitrite concentrations increasing. Electrical conductivity and malondialdehyde contents investigation revealed cell membrane damage and apparent leakage of intracellular contents under high nitrite level conditions due to oxidative stress enhancement. Intracellular microcystin (MC)-LR content reached the highest value at 10 mg NO2-N L−1; however, extracellular MC-LR contents showed a continuous increase until 15 mg NO2-N L−1 owing to the increasing leakage of intracellular contents. These results elucidated that the high-level nitrite inhibited M. aeruginosa growth by rising oxidative stress, damaging cell membrane, and reducing photosynthesis. However, the moderate increase in nitrite concentrations promoted toxin production and release of toxin.  相似文献   

4.
In a lowland drinking water catchment area, nitrate leaching as well as groundwater recharge (GWR) was investigated in willow and poplar short rotation coppice (SRC) plantations of different ages, soil preparation measures prior to planting and harvesting intervals. Significantly increased nitrate concentrations of 16.6 ± 1.6 mg NO3-N L−1 were measured in winter/spring 2010 on a poplar site, established in 2009 after deep plowing (90 cm) but then, subsequently decreased strongly to below 2 mg NO3-N L−1 in spring 2011. The fallow ground reference plot showed nitrate concentrations consistently below 1 mg L−1 and estimated annual seepage output loss was only 1.36 ± 1.1 kg ha−1 a−1. Leaching loss from a neighboring willow plot from 2005 was 14.3 ± 6.6 kg NO3-N ha−1 during spring 2010 but decreased to 2.0 ± 1.5 kg NO3-N ha−1 during the subsequent drainage period. A second willow plot, not harvested since its establishment in 1994, showed continuously higher nitrate concentrations (10.2 ± 1.7 NO3-N L−1), while a neighboring poplar plot, twice harvested since 1994 showed significantly reduced nitrate concentrations. Water balance simulations, referenced by soil water tension and throughfall measurements, showed that at 655 mm annual rainfall, GWR from the reference plot (300 mm a−1) was reduced by 40 % (to 180 mm a−1) on the 2005 willow stand, mainly due to doubled rainfall interception losses. However, transpiration was limited by low soil water storage capacities, which in turn led to a moderate impact on GWR. We conclude that well-managed SRC on sensitive areas can prevent nitrate leaching, while impacts on GWR may be mitigated by management options.  相似文献   

5.
Efficient nitrification and denitrification of wastewater containing 1,700 mgl−1 of ammonium-nitrogen was achieved using aerobic granular sludge cultivated at medium-to-high organic loading rates. The cultivated granules were tested in a sequencing batch reactor (SBR) fed with 6.4 or 10.2 kg NH4+-N m−3 day−1, a loading significantly higher than that reported in literature. With alternating 2 h oxic and 2 h anoxic operation (OA) modes, removal rate was 45.5 mg NH4+-N g−1 volatile suspended solids−1 h−1 at 6.4 kg NH4+-N m−3 day−1 loading and 41.3 ± 2.0 at 10.2 kg NH4+-N m−3 day−1 loading. Following the 60 days SBR test, granules were intact. The fluorescence in situ hybridization and confocal laser scanning microscopy results indicate that the SBR-OA granules have a distribution with nitrifers outside and heterotrophs outside that can effectively expose functional strains to surrounding substrates at high concentrations with minimal mass transfer limit. This microbial alignment combined with the smooth granule surface achieved nitrification–denitrification of wastewaters containing high-strength ammonium using aerobic granules. Conversely, the SBR continuous aeration mode yielded a distribution with nitrifers outside and heterotrophs inside with an unsatisfactory denitrification rate and floating granules as gas likely accumulated deep in the granules.  相似文献   

6.
The effect of glucose addition (0 and 500 μg C g−1 soil) and nitrate (NO3) addition (0, 10, 50 and 500 μg NO3–N g−1 soil) on nitric oxide reductase (cnorB) gene abundance and mRNA levels, and cumulative denitrification were quantified over 48 h in anoxic soils inoculated with Pseudomonas mandelii. Addition of glucose-C significantly increased cnorB p (P. mandelii and related species) mRNA levels and abundance compared with soil with no glucose added, averaged over time and NO3 addition treatments. Without glucose addition, cnorB p mRNA levels were higher when 500 μg NO3–N g−1 soil was added compared with other NO3 additions. In treatments with glucose added, addition of 50 μg NO3–N g−1 soil resulted in higher cnorB p mRNA levels than soil without NO3 but was not different from the 10 and 500 μg NO3–N g−1 treatments. cnorB p abundance in soils without glucose addition was significantly higher in soils with 500 μg NO3–N g−1 soil compared to lower N-treated soils. Conversely, addition of 500 μg NO3–N g−1 soil resulted in lower cnorB p abundance compared with soil without N-addition. Over 48 h, cumulative denitrification in soils with 500 μg glucose-C g−1 soil, and 50 or 500 μg NO3–N g−1 was higher than all other treatments. There was a positive correlation between cnorB p abundance and cumulative denitrification, but only in soils without glucose addition. Glucose-treated soils generally had higher cnorB p abundance and mRNA levels than soils without glucose added, however response of cnorB p abundance and mRNA levels to NO3 supply depended on carbon availability.  相似文献   

7.
Aspects of denitrification and benzoate degradation were studied in two estuarine microbial mat communities on the California coast by measuring the depth distributions of potential denitrification rates, genetic potential for denitrification, nitrate concentration, benzoate mineralization rates, total bacterial abundance, and abundance of a denitrifying strain (TBD-8b) isolated from one of the sites. Potential denitrification was detected in microbial mat cores from both Elkhorn Slough and Tomales Bay. Maximum denitrification rates were more than two orders of magnitude higher at Elkhorn Slough (3.14 mmol N m−2 d−1) than at Tomales Bay (0.02 mmol N m−2 d−1), and at both sites, the maximum rates occurred in the 0–2 mm depth interval. Ambient pore [NO3+NO2] was substantially higher at Elkhorn Slough than at Tomales Bay. Incorporation and mineralization of benzoate was maximal near the mat surface at Elkhorn Slough. The areal rate of benzoate utilization was 1045 nmol C m−2 d−1, which represented utilization of 70% of the added substrate in 24 h. Total bacterial and TBD-8b abundances were greatest near the surface at both Tomales Bay and Elkhorn Slough, and TBD-8b represented less than 0.2% of the total. Genetic potential for denitrification, quantified by hybridization with a nitrite reductase gene fragment, was present below the mat surface at average levels representing presence of the gene in approximately 10% of the total cells.  相似文献   

8.
The Ferrous Wheel Hypothesis (Davidson et al. 2003) postulates the abiotic formation of dissolved organic N (DON) in forest floors, by the fast reaction of NO2 with dissolved organic C (DOC). We investigated the abiotic reaction of NO2 with dissolved organic matter extracted from six different forest floors under oxic conditions. Solutions differed in DOC concentrations (15–60 mg L−1), NO2 concentrations (0, 2, 20 mg NO2 -N L−1) and DOC/DON ratio (13.4–25.4). Concentrations of added NO2 never decreased within 60 min, therefore, no DON formation from added NO2 took place in any of the samples. Our results suggest that the reaction of NO2 with natural DOC in forest floors is rather unlikely.  相似文献   

9.
Liu H  Guo J  Qu J  Lian J  Jefferson W  Yang J  Li H 《Biodegradation》2012,23(3):399-405
The accelerating effect of non-dissolved redox mediator (1,5-dichloroanthraquinone) on the biological denitrification was investigated in this paper using 1,5-dichloroanthraquinone immobilized by calcium alginate (CA) and a heterotrophic denitrification bacterium of Paracoccus versutus (GU111570). The results suggested that the denitrification rate was enhanced 2.1 fold by 25 mmol l−1 1,5-dichloroanthraquinone of this study, and a positive correlation was found for the denitrification rate and 1,5-dichloroanthraquinone concentrations from 0 to 25 mmol l−1. According to the change characteristic of NO3 and NO2 during the denitrification process, the tentative accelerating mechanism of the denitrification by redox mediators was put forward, and redox mediator might play the role of reduced cofactors like NADH, N(A)DH and SDH, or the similar ubiquinol/ubiquinone (Q/QH2) role during the denitrification process.  相似文献   

10.
Microbial community of acetate utilizing denitrifiers in aerobic granules   总被引:2,自引:0,他引:2  
Nitrite accumulates during biological denitrification processes when carbon sources are insufficient. Acetate, methanol, and ethanol were investigated as supplementary carbon sources in the nitrite denitrification process using biogranules. Without supplementary external electron donors (control), the biogranules degraded 200 mg l−1 nitrite at a rate of 0.27 mg NO2–N g−1 VSS h−1. Notably, 1,500 mg l−1 acetate and 700 mg l−1 methanol or ethanol enhanced denitrification rates for 200 mg l−1 nitrite at 2.07, 1.20, and 1.60 mg NO2–N g−1 VSS h−1, respectively; these rates were significantly higher than that of the control. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of the nitrite reductase (NiR) enzyme identified three prominent bands with molecular weights of 37–41 kDa. A linear correlation existed between incremental denitrification rates and incremental activity of the NiR enzyme. The NiR enzyme activity was enhanced by the supplementary carbon sources, thereby increasing the nitrite denitrification rate. The capacity of supplementary carbon source on enhancing NiR enzyme activity follows: methanol > acetate > ethanol on molar basis or acetate > ethanol > methanol on an added weight basis.  相似文献   

11.
We investigated controls on stream sediment denitrification in nine headwater streams in the Kalamazoo River Watershed, Michigan, USA. Factors influencing denitrification were determined by using experimental assays based on the chloramphenicol-amended acetylene inhibition technique. Using a coring technique, we found that sediment denitrification was highest in the top 5 cm of the benthos and was positively related to sediment organic content. To determine the effect of overlying water quality on sediment denitrification, first-order stream sediments were assayed with water from second- and third-order downstream reaches, and often showed higher denitrification rates relative to assays using site-specific water from the first-order stream reach. Denitrification was positively related to nitrate (NO3 ) concentration, suggesting that sediments may have been nutrient-limited. Using stream-incubated inorganic substrata of varying size classes, we found that finer-grained sand showed higher rates of denitrification compared to large pebbles, likely due to increased surface area per volume of substratum. Denitrification was measurable on both inorganic substrata and fine particulate organic matter loosely associated with inorganic particles, and denitrification rates were related to organic content. Using nutrient-amended denitrification assays, we found that sediment denitrification was limited by NO3 or dissolved organic carbon (DOC, as dextrose) variably throughout the year. The frequency and type of limitation differed with land use in the watershed: forested streams were NO3 -limited or co-limited by both NO3 and DOC 92% of the time, urban streams were more often NO3 -limited than DOC-limited, whereas agricultural stream sediments were DOC-limited or co-limited but not frequently limited by NO3 alone.  相似文献   

12.
Denitrification activity and oxygen dynamics in Arctic sea ice   总被引:1,自引:0,他引:1  
Denitrification and oxygen dynamics were investigated in the sea ice of Franklin Bay (70°N), Canada. These investigations were complemented with measurements of denitrification rates in sea ice from different parts of the Arctic (69°N–85°N). Potential for bacterial denitrification activity (5–194 μmol N m−2 day−1) and anammox activity (3–5 μmol N m−2 day−1) in melt water from both first-year and multi-year sea ice was found. These values correspond to 27 and 7%, respectively, of the benthic denitrification and anammox activities in Arctic sediments. Although we report only potential denitrification and anammox rates, we present several indications that active denitrification in sea ice may occur in Franklin Bay (and elsewhere): (1) despite sea ice-algal primary production in the lower sea ice layers, heterotrophic activity resulted in net oxygen consumption in the sea ice of 1–3 μmol l−1 sea ice per day at in situ light conditions, suggesting that O2 depletion may occur prior to the spring bloom. (2) The ample organic carbon (DOC) and NO3 present in sea ice may support an active denitrification population. (3) Measurements of O2 conditions in melted sea ice cores showed very low bulk concentrations, and in some cases anoxic conditions prevailed. (4) Laboratory studies using planar optodes for measuring the high-resolution two-dimensional O2 distributions in sea ice confirmed the very dynamic and heterogeneous O2 distribution in sea ice, displaying a mosaic of microsites of high and low O2 concentrations. Brine enclosures and channels were strongly O2 depleted in actively melting sea ice, and anoxic conditions in parts of the brine system would favour anaerobic processes.  相似文献   

13.
Reservoirs are intrinsically linked to the rivers that feed them, creating a river–reservoir continuum in which water and sediment inputs are a function of the surrounding watershed land use. We examined the spatial and temporal variability of sediment denitrification rates by sampling longitudinally along an agriculturally influenced river–reservoir continuum monthly for 13 months. Sediment denitrification rates ranged from 0 to 63 μg N2O g ash free dry mass of sediments (AFDM)−1 h−1 or 0–2.7 μg N2O g dry mass of sediments (DM)−1 h−1 at reservoir sites, vs. 0–12 μg N2O gAFDM−1 h−1 or 0–0.27 μg N2O gDM−1 h−1 at riverine sites. Temporally, highest denitrification activity traveled through the reservoir from upper reservoir sites to the dam, following the load of high nitrate (NO3-N) water associated with spring runoff. Annual mean sediment denitrification rates at different reservoir sites were consistently higher than at riverine sites, yet significant relationships among theses sites differed when denitrification rates were expressed per gDM vs. per gAFDM. There was a significant positive relationship between sediment denitrification rates and NO3-N concentration up to a threshold of 0.88 mg NO3 -N l−1, above which it appeared NO3-N was no longer limiting. Denitrification assays were amended seasonally with NO3-N and an organic carbon source (glucose) to determine nutrient limitation of sediment denitrification. While organic carbon never limited sediment denitrification, all sites were significantly limited by NO3-N during fall and winter when ambient NO 3-N was low.  相似文献   

14.
This study demonstrated the feasibility of a biological denitrification process using immobilized Pseudomonas stutzeri. The microbial cellulose (MC) from Acetobacter xylinum was used as the support material for immobilization of the bacterium. Nitrate removal took place mainly in the anoxic system. The effects of various operating conditions such as the initial nitrate concentration, pH, and carbon source on biological denitrification were demonstrated experimentally. The system demonstrated a high capacity for reducing nitrate concentrations under optimum conditions. The denitrification rate increased up to a maximal value of 1.6 kg NO3-N m−3 day−1 with increasing nitrate loading rate. Because of its porosity and purity, MC may be considered as appropriate supports for adsorbed immobilized cells. The simplicity of immobilization and high efficiency in operation are the main advantages of such systems. To date, the immobilization of microorganisms onto MC has not been carried out. The results of this research shows that a pilot bioreactor containing P. stutzeri immobilized on MC exhibited efficient denitrification with a relatively low retention time.  相似文献   

15.
Nitrogen dynamics in Lake Okeechobee: forms,functions, and changes   总被引:1,自引:0,他引:1  
Total nitrogen (TN) in Lake Okeechobee, a large, shallow, turbid lake in south Florida, has averaged between 90 and 150 μM on an annual basis since 1983. No TN trends are evident, despite major storm events, droughts, and nutrient management changes in the watershed. To understand the relative stability of TN, this study evaluates nitrogen (N) dynamics at three temporal/spatial levels: (1) annual whole lake N budgets, (2) monthly in-lake water quality measurements in offshore and nearshore areas, and (3) isotope addition experiments lasting 3 days and using 15N-ammonium (15NH4 +) and 15N-nitrate (15NO3 ) at two offshore locations. Budgets indicate that the lake is a net sink for N. TN concentrations were less variable than net N loads, suggesting that in-lake processes moderate these net loads. Monthly NO3 concentrations were higher in the offshore area and higher in winter for both offshore and nearshore areas. Negative relationships between the percentage of samples classified as algal blooms (defined as chlorophyll a > 40 μg l−1) and inorganic N concentrations suggest N-limitation. Continuous-flow experiments over intact sediment cores measured net fluxes (μmol N m−2 h−1) between 0 and 25 released from sediments for NH4 +, 0–60 removed by sediments for NO3 , and 63–68 transformed by denitrification. Uptake rates in the water column (μmol N m−2 h−1) determined by isotope dilution experiments and normalized for water depth were 1,090–1,970 for NH4 + and 59–119 for NO3 . These fluxes are similar to previously reported results. Our work suggests that external N inputs are balanced in Lake Okeechobee by denitrification.  相似文献   

16.
Rapid Nitrate Loss and Denitrification in a Temperate River Floodplain   总被引:3,自引:0,他引:3  
Nitrogen (N) pollution is a problem in many large temperate zone rivers, and N retention in river channels is often small in these systems. To determine the potential for floodplains to act as N sinks during overbank flooding, we combined monitoring, denitrification assays, and experimental nitrate (NO3 -N) additions to determine how the amount and form of N changed during flooding and the processes responsible for these changes in the Wisconsin River floodplain (USA). Spring flooding increased N concentrations in the floodplain to levels equal to the river. As discharge declined and connectivity between the river and floodplain was disrupted, total dissolved N decreased over 75% from 1.41 mg l−1, equivalent to source water in the Wisconsin River on 14 April 2001, to 0.34 mg l−1 on 22 April 2001. Simultaneously NO3 -N was attenuated almost 100% from 1.09 to <0.002 mg l−1. Unamended sediment denitrification rates were moderate (0–483 μg m−2 h−1) and seasonally variable, and activity was limited by the availability of NO 3 -N on all dates. Two experimental NO3 -N pulse additions to floodplain water bodies confirmed rapid NO3 -N depletion. Over 80% of the observed NO 3 -N decline was caused by hydrologic export for addition #1 but only 22% in addition #2. During the second addition, a significant fraction (>60%) of NO3 -N mass loss was not attributable to hydrologic losses or conversion to other forms of N, suggesting that denitrification was likely responsible for most of the NO3 -N disappearance. Floodplain capacity to decrease the dominant fraction of river borne N within days of inundation demonstrates that the Wisconsin River floodplain was an active N sink, that denitrification often drives N losses, and that enhancing connections between rivers and their floodplains may enhance overall retention and reduce N exports from large basins.  相似文献   

17.
The denitrification performance of a lab-scale anoxic rotating biological contactor (RBC) using landfill leachate with high nitrate concentration was evaluated. Under a carbon to nitrogen ratio (C/N) of 2, the reactor achieved N-NO3 removal efficiencies above 95% for concentrations up to 100 mg N-NO3  l−1. The highest observed denitrification rate was 55 mg N-NO3  l−1 h−1 (15 g N-NO3  m−2 d−1) at a nitrate concentration of 560 mg N-NO3  l−1. Although the reactor has revealed a very good performance in terms of denitrification, effluent chemical oxygen demand (COD) concentrations were still high for direct discharge. The results obtained in a subsequent experiment at constant nitrate concentration (220 mg N-NO3  l−1) and lower C/N ratios (1.2 and 1.5) evidenced that the organic matter present in the leachate was non-biodegradable. A phosphorus concentration of 10 mg P-PO4 3− l−1 promoted autotrophic denitrification, revealing the importance of phosphorus concentration on biological denitrification processes.  相似文献   

18.
A whey solution was used as a substrate for methane production in an anaerobic fixed-bed reactor. At a hydraulic retention time of 10 days, equivalent to a space loading of 3.3 kg (m3 day)−1, 90% of the chemical oxygen demand was converted to biogas. Only a little propionate remained in the effluent. Toxicity tests with either copper chloride, zinc chloride or nickel chloride were performed on effluent from the reactor. Fifty per cent inhibition of methanogenesis was observed in the presence of ≥10 mg CuCl2 l−1≥40 mg ZnCl2 l−1 and ≥60 mg NiCl2 l−1, respectively. After exposure to Cu2+, Zn2+ or Ni2+ ions for 12 days, complete recovery of methanogenesis by equimolar sulfide addition was possible upon prolonged incubation. Recovery failed, however, for copper chloride concentrations ≥40 mg l−1. If the sulfide was added simultaneously with the three heavy metal salts, methanogenesis was only slightly retarded and the same amount of methane as in non-inhibited controls was reached either 1 day (40 mg ZnCl2 l−1) or 2 days later (10 mg CuCl2 l−1). Up to 60 mg NiCl2 l−1 had no effect if sulfide was present. Sulfide presumably precipitated the heavy metals as metal sulfides and by this means prevented heavy metal toxicity. Received: 8 October 1999 / Received revision: 3 January 2000 / Accepted: 4 January 2000  相似文献   

19.
Zu-Hua Yin  John A. Raven 《Planta》1998,205(4):574-580
The impacts of various nitrogen sources, i.e. NO 3, NH4 + or NH4NO3 in combination with gaseous NH3, on nitrogen-, carbon- and water-use efficiency and 13C discrimination (δ13C) by plants of the C3 species Triticum aestivum L. (wheat) and the C4 species Zea mays L. (maize) were studied. Triticum aestivum and Z. mays were hydroponically grown with 2 mol · m−3 of N supplied as NO 3, NH4 + or NH4NO3 for 21 and 18 d, respectively, and thereafter exposed to gaseous NH3 at 320 μg · m−3 or to ambient air for 7 d. In T. aestivum and Z. mays over a 7-d growth period, nitrogen-use efficiency (NUE) values were influenced by N-sources in the decreasing order NH4NO3-N > NO 3-N > NH4 +-N and NO 3-N > NH4NO3-N > NH4 +-N, respectively. Fumigation with NH3 decreased the NUE values of plants grown with any of the N-forms. During 28- and 7-d growth periods, N-sources affected water-use efficiency (WUE) values in the decreasing order of NH4 +-N > NO 3-N≈NH4NO3-N in non-fumigated T. aestivum, while fumigation with NH3 increased the WUE of NO 3-grown plants. There were insignificant effects of N-sources on WUE values of Z. mays over 25- and 7-d growth periods. Furthermore, δ13C values in plant tissues (leaves, stubble and roots) were higher (less negative) in NH4 +-grown plants of T. aestivum and Z. mays than in those supplied with NH4NO3 or NO 3. Regardless of the N-form supplied to the roots of the plant species, exposure to NH3 caused more-positive δ13C values in the plant tissues. These results indicate that the variations in N-source were associated with small but significant variations in δ13C values in plants of T. aestivum and Z. mays. These differences in δ13C values are in the direction expected from differences in WUE values over long or short growth periods and with differences in the extent of non-Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase, EC 4.1.1.39) carboxylate contribution to net C acquisition, as a function of N-source. Received: 12 September 1997 / Accepted: 13 January 1998  相似文献   

20.
Urban streams often contain elevated concentrations of nitrogen (N) which can be amplified in systems receiving effluent from wastewater treatment plants (WWTP). In this study, we evaluated the importance of denitrification in a stream draining urban Greensboro, NC, USA, using two approaches: (1) natural abundance of 15N–NO3 in conjunction with background NO3–N concentrations along a 7 km transect downstream of a WWTP; and (2) C2H2 block experiments at three sites and at three habitat types within each site. Overall lack of a longitudinal pattern of δ15N–NO3 and NO3–N, combined with high concentrations of NO3–N suggested that other factors were controlling NO3–N flux in the study transect. However, denitrification did appear to be significant along one portion of the transect. C2H2 block experiments showed that denitrification rates were much higher downstream of the WWTP compared to upstream, and showed that denitrification rates were highest in erosional and depositional areas downstream of the WWTP and in erosional areas upstream of the plant. Thus, the combination of the two methods for evaluating denitrification provided more insight into the spatial dynamics of denitrification activity than either approach alone. Denitrification appeared to be a significant sink for NO3–N upstream of the WWTP, but not downstream. Approximately 46% of the total NO3–N load was removed via denitrification in the upstream, urban section of the stream, while only 2.3% of NO3–N was lost downstream of the plant. This result suggests that controlling NO3–N loading from the plant could result in considerable improvement of downstream water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号