首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogeographic analyses using chloroplast DNA (cpDNA) variation were performed for Pedicularis ser. Gloriosae (Orobanchaceae). Eighty-one plants of 18 populations of 6 species (P. gloriosa, P. iwatensis, P. nipponica, P. ochiaiana, P. sceptrum-carolinum and P. grandiflora) were analyzed. Fifteen distinct haplotypes were identified based on six cpDNA regions: the intergenic spacer between the trnT and trnL 3′exon, trnL 3′exon-trnF, atpB-rbcL, accDpsaI, the rpl16 intron and the trnK region (including the matK gene). Via phylogenetic analyses of the haplotypes, two continental species, P. sceptrum-carolinum and P. grandiflora, were placed at the most ancestral position in the trees. The former species is widely distributed in the Eurasian continent, and the latter is distributed in Far East Asia. Two robust major cpDNA clades (clades I and II) were revealed in the Japanese archipelago, although the statistical values of monophyly of these clades were weak. Clade I included the haplotypes (A-1, A-2, B-1, B-2 and J) of three species (P. gloriosa, P. iwatensis and P. ochiaiana), and Clade II included seven haplotypes (C-D, E-1, E-2 and F-H) of P. nipponica. These results suggest that this series originated on the Eurasian continent and that subsequently populations at the eastern edge of the continent differentiated into the two Japanese lineages. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.  相似文献   

3.
The trnS/psbC region of chloroplast DNA (cpDNA) was sequenced for 18 Elymus polyploid species, Hordelymus europaeus and their putative diploid ancestors. The objective was to determine the maternal origin and evolutionary relationships of these polyploid taxa. Phylogenetic analysis showed that Elymus and Pseudoroegneria species formed a highly supported monophyletic group (100 % bootstrap values), suggesting that Pseudoroegneria is the maternal genome donor to polyploid Elymus species studied here. The phylogenetic tree based on cpDNA sequence data indicates that E. submuticus contains a St-genome. Taking into consideration of our previously published RPB2 data, we can conclude that hexaploid E. submuticus contains at least one copy of St and Y genomes. Our Neighor-joining analysis of cpDNA data put Psathyrostachys juncea, Hordeum bogdanii and Hordelymus europaeus into one group, suggesting a close relationship among them.  相似文献   

4.
Using random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), and morphological traits, the first genetic maps for Cucurbita pepo (2n=2x=40) were constructed and compared. The two mapping populations consisted of 92 F2 individuals each. One map was developed from a cross between an oil-seed pumpkin breeding line and a zucchini accession, into which genes for resistance to Zucchini Yellow Mosaic Virus (ZYMV) from a related species, C. moschata, had been introgressed. The other map was developed from a cross between an oil-seed pumpkin and a crookneck variety. A total of 332 and 323 markers were mapped in the two populations. Markers were distributed in each map over 21 linkage groups and covered an average of 2,200 cM of the C. pepo genome. The two maps had 62 loci in common, which enabled identification of 14 homologous linkage groups. Polyacrylamide gel analyses allowed detection of a high number of markers suitable for mapping, 10% of which were co-dominant RAPD loci. In the Pumpkin-Zucchini population, bulked segregant analysis (BSA) identified seven markers less than 7 cM distant from the locus n, affecting lignification of the seed coat. One of these markers, linked to the recessive hull-less allele (AW11-420), was also found in the Pumpkin-Crookneck population, 4 cM from n. In the Pumpkin-Zucchini population, 24 RAPD markers, previously introduced into C. pepo from C. moschata, were mapped in two linkage groups (13 and 11 markers in LGpz1 and LGpz2, respectively), together with two sequence characterized amplified region (SCAR) markers linked to genes for resistance to ZYMV.  相似文献   

5.
Species of the genus Elymus are closely related to some important cereal crops and may thus serve as potential alien genetic resources for the improvement of these crops. E. humidus is indigenous to Japan and is well adapted to a humid climate. However, the phylogenetic and evolutionary relationships between E. humidus and other Elymus species are unclear. To elucidate these relationships, we examined the sequences of three non-coding regions of chloroplast DNA (cpDNA) and the amplified fragment length polymorphism (AFLP) variation of nuclear DNA in E. humidus and other related species. A total of 15 sequence mutations from the three non-coding regions, trnL-trnF, trnF-ndhJ(C), and atpB-rbcL, covering approximately 1,800 bp, were detected in the Elymus species. A phylogenic tree resulting from the cpDNA sequence data revealed that all the species containing the St nuclear genome (St, StH, StY, and StHY) formed a well-supported clade that is remote from the Hordeum species (H). This result strongly supports the finding that Pseudoroegneria is the maternal genome donor to the genus Elymus. In addition, E. humidus showed the closest relationship with the cpDNA genome of the Pseudoroegneria species. The AFLP analysis detected 281 polymorphic bands with 11 AFLP primer combinations. The AFLP result showed that E. humidus is relatively closer to E. tsukushiensis. However, the cpDNA sequencing results indicated that E. humidus and E. tsukushiensis have different cytoplasmic origins. Our results suggest that the evolutionary process between E. humidus and E. tsukushiensis is not monophyletic, although the two species have similar morphological characters and adaptability.Communicated by J. Dvorak  相似文献   

6.
This study aimed at the indentification of the species and genotypes of the genus Crataegus in Syria and determination of the genetic relationships among them based on the analysis of genomic and chloroplast DNA (cpDNA) using ISSRs and CAPS techniques. Morphological characterization carried out on 49 Crataegus samples collected from different geographical regions of Syria revealed four Crataegus species: momogyna, C. sinaica, C. aronia and C. azarolus. In the dendrogram constructed for those samples based on ISSRs (20 primers), all samples that belong to C. monogyna were clustered in one cluster. Samples of the other three species were overlaped in another cluster. Two samples of these were the most distant from all other samples in the dendrogram and were suggested to represent hybrid species or subspecies. When CAPS technique was applied on four Crataegus samples that represent the four suggested species using 22 cpDNA regions and 90 endonucleases, no polymorphism was detected neither in amplification products sizes nor in restriction profiles. The inability of detection of variation in cpDNA among species suggested can be attributed to the low level of evolution of the cpDNA in the genus, and to the possibility that some of these species are either subspecies or hybrids since the cpDNA is inherited through one parent only.  相似文献   

7.
The wild flowering cherry Prunus lannesiana var. speciosa is highly geographically restricted, being confined to the Izu Islands and neighboring peninsulas in Japan. In an attempt to elucidate how populations of this species have established we investigated the genetic diversity and differentiation in seven populations (sampling 408 individuals in total), using three kinds of genetic markers: chloroplast DNA (cpDNA), amplified fragment length polymorphisms (AFLPs), and 11 nuclear SSR polymorphic loci. Eight haplotypes were identified based on the cpDNA sequence variations, 64 polymorphic fragments were scored for the AFLP markers, and a total of 154 alleles were detected at the 11 nuclear SSR loci. Analysis of molecular variance showed that among-population variation accounted for 16.55, 15.04 and 7.45% of the total detected variation at the cpDNA, AFLPs, and SSR loci, respectively. Thus, variation within populations accounted for most of the genetic variance for all types of markers, although the genetic differentiation among populations was also highly significant. For cpDNA variation, no clear structure was found among the populations, except that of the most distant island, although an “isolation by distance” pattern was found for each marker. Both neighbor-joining trees and structure analysis indicate that the genetic relationships between populations reflect geological variations between the peninsula and the islands and among the islands. Furthermore, hybridization with related species may have affected the genetic structure, and some genetic introgression is likely to have occurred.  相似文献   

8.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

9.
A pseudo-testcross mapping strategy was used in combination with the random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) genotyping methods to develop two moderately dense genetic linkage maps for Betula platyphylla Suk. (Asian white birch) and B. pendula Roth (European white birch). Eighty F1 progenies were screened with 291 RAPD markers and 451 AFLP markers. We selected 230 RAPD and 362 AFLP markers with 1:1 segregation and used them for constructing the parent-specific linkage maps. The resultant map for B. platyphylla was composed of 226 markers in 24 linkage groups (LGs), and spanned 2864.5 cM with an average of 14.3 cM between adjacent markers. The linkage map for B. pendula was composed of 226 markers in 23 LGs, covering 2489.7 cM. The average map distance between adjacent markers was 13.1 cM. Clustering of AFLP markers was observed on several LGs. The availability of these white birch linkage maps will contribute to the molecular genetics and the implementation of marker-assisted selection in these important forest species.  相似文献   

10.
Calycanthus chinensis is an endangered plant of the national second-grade protection of China restricted in a small area in Zhejiang Province. We studied parameters of photosynthesis, chlorophyll (Chl) contents, and Chl fluorescence (minimum fluorescence, F0, maximum fluorescence, Fm, variable fluorescence, Fv, and Fv/Fm) of C. chinensis and Chimonanthus praecox. C. chinensis had lower compensation irradiance but higher saturation irradiance than C. praecox. Hence C. chinensis has more advantage in obtaining and utilizing photon energy and higher Chl content, and is more adaptive to higher temperature and propitious to thermal dissipation than C. praecox. In addition, C. chinensis produces abundant, well-preserved seed with a higher germination rate and a wider adaptability to temperature than C. praecox. Thus C. chinensis is prone to survival and viability, and gets rid of the endangered plant species of the national second-grade protection of China.  相似文献   

11.
One single pathogen Fusarium graminearum Schw. was inoculated to maize inbred lines 1,145 (Resistant) and Y331 (Susceptive), and their progenies of F1, F2 and BC1F1 populations. Field statistical data revealed that all of the F1 individuals were resistant to the disease and that the ratio of resistant plants to susceptive plants was 3:1 in the F2 population, and 1:1 in the BC1F1 population. The results revealed that a single dominant gene controls the resistance to F. graminearum Schw.. The resistant gene to F. graminearum Schw. was denominated as Rfg1 according to the standard principle of the nomenclature of the plant disease resistant genes. RAPD (randomly amplified polymorphic DNA) combined with BSA (bulked segregant analysis) analysis was carried out in the developed F2 and BC1F1 populations, respectively. Three RAPD products screened from the RAPD analysis with 820 Operon 10-mer primers showed the linkage relation with the resistant gene Rfg1. The three RAPD amplification products (OPD-201000, OPA-041100 and OPY-04900) were cloned and their copy numbers were determined. The results indicated that only OPY-04900 was a single-copy sequence. Then, OPY-04900 was used as a probe to map the Rfg1 gene with a RIL F7 mapping population provided by Henry Nguyen, which was developed from the cross S3×Mo17. Rfg1 was primarily mapped on chromosome 6 between the two linked markers OPY-04900 and umc21 (Bin 6.04–6.05). In order to confirm the primary mapping result, 25 SSR (simple sequence repeat) markers and six RFLP (restriction fragment length polymorphism) markers in the Rfg1 gene-encompassing region were selected, and their linkage relation with Rfg1 was analyzed in our F2 population. Results indicated that SSR marker mmc0241 and RFLP marker bnl3.03 are flanking the Rfg1 gene with a genetic distance of 3.0 cM and 2.0 cM, respectively. This is the first time to name and to map a single resistant gene of maize stalk rot through a single pathogen inoculation and molecular marker analysis.Communicated by H.F. Linskens  相似文献   

12.
Melon (Cucumis melo L.) is one of the most popular and highly nutritious vegetable species within Cucurbitaceae. Because appearance is used as an important indicator of quality, the spotted to non-spotted trait associated with this product somewhat influences the buying habits of consumers. We tested a six-generation family to determine the inheritance and genetic basis of this trait. Genetic groups F1, F2, BC1P1, and BC1P2 were from a cross between “IM16559” (non-spotted) and “IM16553” (spotted). Our genetic analysis showed that the spotted to non-spotted trait was controlled by a single dominant gene that we named CmSp-1. Whole-genome resequencing-bulked segregant analysis (WG-BSA) demonstrated that this gene was located on the end of chromosome 2, in the intersections of 22,160,000 to 22,180,000 bp and 22,260,000 to 26,180,000 bp, an interval distance of 3.94 Mb. Insertion-deletion (InDel) markers designed based on WG-BSA data were used to map this gene. Using 13 InDel markers, we produced a genetic map indicating that CmSp-1 was tightly linked to markers I734-2 and I757, with genetic distances of 1.8 and 0.4 cM and an interval distance of 280.872 kb. The closest marker was I757. Testing of 107 different melon genotypes presented an accuracy of 84.11% in predicting the phenotype. By being able to locate CmSp-1 in melon, we can now use the findings to identify potential targets for further marker-assisted breeding and cloning projects.  相似文献   

13.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

14.
The mitochondrial cytochrome c oxidase subunit I gene sequence was recently developed for DNA barcoding of red algal species. We determined the 1245 base pairs of the gene from 27 taxa of an agar-producing species, Gracilaria vermiculophylla, and putative relatives and compared the results with rbcL data from the same species. A total of 392 positions (31.5%) were variable, 282 positions (22.6%) were parsimoniously informative, and average sequence divergence was 13% in an ingroup. Within G. vermiculophylla, pairwise divergence of the gene was variable up to 11 bp (0.9%). Seven recognized haplotypes of cox1 tended to be geographically related. In the aligned 1386 bp of rbcL, three haplotypes were recognized. These results suggest that cox1 is a valuable molecular marker within species and will be very useful in haplotype analyses.  相似文献   

15.
In order to assist breeding and gene pool conservation in tropical Acacias, we aimed to develop a set of multipurpose SSR markers for use in both Acacia mangium and A. auriculiformis. A total of 51 SSR markers (developed in A. mangium and natural A. mangium x A. auriculiformis hybrid) were tested. A final set of 16 well-performing SSR markers were identified, six of which were species diagnostic. The markers were optimized for assay in four multiplex mixes and used to genotype range-wide samples of A. mangium, A. auriculiformis, and putative F1 hybrids. Simulation analysis was used to investigate the power of the markers for identifying the pure species and their F1, F2, and backcross hybrids. The six species diagnostic markers were particularly powerful for detecting F1 hybrids from pure species but could also discriminate the pure species from F2 and backcross progenies in most cases (97 %). STRUCTURE analysis using all 16 markers was likewise able to distinguish these cross types and pure species sets. Both sets of markers had difficulties in distinguishing F2 and backcross progenies. However, identifying F1 from pure species is the current primary concern in countries where these species are planted. The SSR marker set also has direct application in DNA profiling (probability of identity?=?4.1?×?10?13), breeding system analysis, and population genetics.  相似文献   

16.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating disease in rice worldwide. The resistance gene Xa7, which provides dominant resistance against the pathogen with avirulence (Avr) gene AvrXa7, has proved to be durably resistant to BB. A set of SSR markers were selected from the “gramene” database based on the Xa7 gene initial mapping region on chromosome 6. These markers were used to construct a high-resolution genetic map of the chromosomal region surrounding the Xa7 gene. An F2 mapping population with 721 highly susceptible individuals derived from a cross between the near isogenic lines (NILs) IRBB7 and IR24 were constructed to localize the Xa7 gene. In a primary analysis with eleven polymorphic SSR markers, Xa7 was located in approximately the 0.28-cM region. To walk closer to the target gene, recombinant F2 individuals were tested using newly developed STMS (sequence tagged microsatellite) markers. Finally, the Xa7 gene was mapped to a 0.21-cM interval between the markers GDSSR02 and RM20593. The Xa7-linked markers were landed on the reference sequence of cv. Nipponbare through bioinformatics analysis. A contig map corresponding to the Xa7 gene was constructed. The target gene was assumed to span an interval of approximately 118.5-kb which contained a total of fourteen genes released by the TIGR Genome Annotation Version 5.0. Candidate-gene analysis of Xa7 revealed that the fourteen genes encode novel domains that have no amino acid sequence similar to other cloned Xa(xa) genes. Shen Chen and Zhanghui Huang are contributed equally to this work.  相似文献   

17.
Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.  相似文献   

18.
Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae) is a difficult fern species to taxonomically classify. Three cryptic species were revealed in the previous studies, referred to as the north type, the south type, and the third type. Because much of the distribution range of C. thalictroides in China was not included in the sampling of the previous studies, the taxonomic complexity of C. thalictroides in China remained uncertain. In order to identify the uncharacterized cryptic species, we examined four chloroplast DNA (cpDNA) non-coding regions and compared sequence variation within this species complex. Sequence data were obtained from 143 individuals in 24 populations throughout the natural distribution of the species in China. Nineteen haplotypes were identified. Molecular systematic and phylogeographical analyses revealed two genetically distinct clusters of cpDNA haplotypes in China. One cluster included haplotypes associated with the north type, and another with the south type cryptic species. The N ST value was significantly higher than the G ST value (N ST = 0.768 > G ST = 0.434, P < 0.05), indicating the presence of a significant phylogeographical structure of C. thalictroides in China. The results of AMOVA analysis showed a significant inter-group differentiation (F ST = 0.918; P < 0.001). Analyses based on different, but complementary methods suggest that in China, C. thalictroides contains only two of the cryptic species (the north and south types). Two haplotypes, H8 and H17, of the interior node in the minimum-spanning network (MSN) of cpDNA haplotypes are widespread. The origin of the widespread haplotypes in China may have resulted from long-distance dispersal to China.  相似文献   

19.
Xu XY  Hu ZY  Li JF  Liu JH  Deng XX 《Plant cell reports》2007,26(8):1263-1273
In the present paper, attempts were made to explore the possibility of employing ultraviolet (UV) irradiation in citrus asymmetric fusion for transfer of limited amount of favorable traits from a desirable cultivar to a target one. Exposure of Satsuma mandarin (Citrus unshiu Marc.) embryogenic protoplasts to UV at an intensity of 300 μW cm−2 led to reduced viability, especially under long irradiation duration. The protoplasts could not grow during culture when they were irradiated for over 30 s. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) assay revealed extensive DNA fragmentation in the UV-irradiated protoplasts compared with those without UV treatment. Electrofusion between UV-irradiated protoplasts of Satsuma mandarin (donor) with those of Jincheng (C. sinensis Osbeck, recipient), a local cultivar of superior quality, gave rise to regeneration of several lines of shoots, which failed to root despite enormous endeavors. Ploidy analysis via flow cytometry and chromosome counting showed that four selected shoots were either diploid, triploid or tetraploid. Random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) confirmed the shoots, irrespective of their ploidy level, as putative somatic hybrids. Cleaved amplified polymorphism sequences (CAPS) demonstrated that the shoots predominantly got their cytoplasmic components, in terms of chloroplast (cp) and mitochondrion DNA, from Jincheng, along with possible recombination of cpDNA in some shoot lines. The current data indicated that UV-based asymmetric fusion could also be employed in citrus somatic hybridization with the intention of creating novel germplasms, which may provide an alternative approach for cultivar improvement.  相似文献   

20.
Three genes, er1, er2 and Er3, conferring resistance to powdery mildew (Erysiphe pisi) in pea have been described so far. Because single gene-controlled resistance tends to be overcome by evolution of pathogen virulence, accumulation of several resistance genes into a single cultivar should enhance the durability of the resistance. Molecular markers linked to genes controlling resistance to E. pisi may facilitate gene pyramiding in pea breeding programs. Molecular markers linked to er1 and er2 are available. In the present study, molecular markers linked to Er3 have been obtained. A segregating F2 population derived from the cross between a breeding line carrying the Er3 gene, and the susceptible cultivar ‘Messire’ was developed and genotyped. Bulk Segregant Analysis (BSA) was used to identify Random Amplified Polymorphic DNA (RAPD) markers linked to Er3. Four RAPD markers linked in coupling phase (OPW04_637, OPC04_640, OPF14_1103, and OPAH06_539) and two in repulsion phase (OPAB01_874 and OPAG05_1240), were identified. Two of these, flanking Er3, were converted to Sequence Characterized Amplified Region (SCAR) markers. The SCAR marker SCW4637 co-segregated with the resistant gene, allowing the detection of all the resistant individuals. The SCAR marker SCAB1874, in repulsion phase with Er3, was located at 2.8 cM from the gene and, in combination with SCW4637, was capable to distinguish homozygous resistant individuals from heterozygous with a high efficiency. In addition, the validation for polymorphism in different genetic backgrounds and advanced breeding material confirmed the utility of both markers in marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号