首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermodynamics of HMGB1 interaction with duplex DNA   总被引:4,自引:0,他引:4  
Müller S  Bianchi ME  Knapp S 《Biochemistry》2001,40(34):10254-10261
The high mobility group protein HMGB1 is a small, highly abundant protein that binds to DNA in a non-sequence-specific manner. HMGB1 consists of 2 DNA binding domains, the HMG boxes A and B, followed by a short basic region and a continuous stretch of 30 glutamate or aspartate residues. Isothermal titration calorimetry was used to characterize the binding of HMGB1 to the double-stranded model DNAs poly(dAdT).(dTdA) and poly(dGdC).(dCdG). To elucidate the contribution of the different structural motifs to DNA binding, calorimetric measurements were performed comparing the single boxes A and B, the two boxes plus or minus the basic sequence stretch (AB(bt) and AB), and the full-length HMGB1 protein. Thermodynamically, binding of HMGB1 and all truncated constructs to duplex DNA was characterized by a positive enthalpy change at 15 degrees C. From the slopes of the temperature dependence of the binding enthalpies, heat capacity changes of -0.129 +/- 0.02 and -0.105 +/- 0.05 kcal mol(-1) K(-1) were determined for box A and full-length HMGB1, respectively. Significant differences in the binding characteristics were observed using full-length HMGB1, suggesting an important role for the acid tail in modulating DNA binding. Moreover, full-length HMGB1 binds differently these two DNA templates: binding to poly(dAdT).(dTdA) was cooperative, had a larger apparent binding site size, and proceeded with a much larger unfavorable binding enthalpy than binding to poly(dGdC).(dCdG).  相似文献   

2.
3.
We have identified strong topoisomerase sites (STS) for Mycobacteruim smegmatis topoisomerase I in double-stranded DNA context using electrophoretic mobility shift assay of enzyme-DNA covalent complexes. Mg2+, an essential component for DNA relaxation activity of the enzyme, is not required for binding to DNA. The enzyme makes single-stranded nicks, with transient covalent interaction at the 5'-end of the broken DNA strand, a characteristic akin to prokaryotic topoisomerases. More importantly, the enzyme binds to duplex DNA having a preferred site with high affinity, a property similar to the eukaryotic type I topoisomerases. The preferred cleavage site is mapped on a 65 bp duplex DNA and found to be CG/TCTT. Thus, the enzyme resembles other prokaryotic type I topoisomerases in mechanistics of the reaction, but is similar to eukaryotic enzymes in DNA recognition properties.  相似文献   

4.
The study of the interactions of double-stranded (ds) DNA with the dirhodium carboxylate compounds Rh(2)(O(2)CCH(3))(4)(H(2)O)(2) (Rh1), [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) (Rh2), and Rh(2)(O(2)CCF(3))(4) (Rh3) supports the presence of covalently linked DNA adducts, including stable DNA interstrand cross-links. The present biochemical study refutes earlier claims that no reaction between dirhodium compounds and dsDNA occurs. The reversal behavior of these interstrand cross-links in 5 M urea at 95 degrees C (for different heating times) implies the presence of various coordination modes involving ax/ax, ax/eq, and eq/eq DNA interactions with the dirhodium core. The reaction rates of the dirhodium compounds with dsDNA were determined spectroscopically and are in the order Rh1 < Rh2 < Rh3. This difference in behavior of the three dirhodium compounds correlates with the lability of the leaving groups and corresponds to the extent of interstrand cross-link formation by these compounds on a 123 bp DNA fragment, as observed by denaturing polyacrylamide gel electrophoresis (dPAGE). Since all three dirhodium compounds form covalent Rh-DNA adducts, including interstrand cross-links, it is important that DNA be considered a potential target for biological activity of these dirhodium carboxylate compounds.  相似文献   

5.
A nicked duplex decamer DNA with a PEG(6) tether   总被引:1,自引:1,他引:0       下载免费PDF全文
A dumbbell double-stranded DNA decamer tethered with a hexaethylene glycol linker moiety (DDSDPEG), with a nick in the centre of one strand, has been synthesised. The standard NMR methods, E.COSY, TOCSY, NOESY and HMQC, were used to measure 1H, 31P and T1 spectral parameters. Molecular modelling using rMD-simulated annealing was used to compute the structure. Scalar couplings and dipolar contacts show that the molecule adopts a right-handed B-DNA helix in 38 mM phosphate buffer at pH 7. Its high melting temperature confirms the good base stacking and stability of the duplex. This is partly attributed to the presence of the PEG6 linker at both ends of the duplex that restricts the dynamics of the stem pentamers and thus stabilises the oligonucleotide. The inspection of the global parameters shows that the linker does not distort the B-DNA geometry. The computed structure suggests that the presence of the nick is not disturbing the overall tertiary structure, base pair geometry or duplex base pairing to a substantial extent. The nick has, however, a noticeable impact on the local geometry at the nick site, indicated clearly by NMR analysis and reflected in the conformational parameters of the computed structure. The 1H spectra also show much sharper resonances in the presence of K+ indicating that conformational heterogeneity of DDSDPEG is reduced in the presence of potassium as compared to sodium or caesium ions. At the same time the 1H resonances have longer T1 times. This parameter is suggested as a sensitive gauge of stabilisation.  相似文献   

6.
Here we report the first evidence of Pt(II) interaction with Amadori compound [N-(1-deoxy-d-Fructos-1-yl)glycine (Fru-Hgly)]. The 1H and 195Pt NMR results show that complexation of Pt(II) by Fru-Hgly is strongly dependent on pH and reaction molar ratio. In 1/1 Pt/Fru-Hgly molar ratio, at acidic pH, the first coordination site is the carboxylic oxygen, while at physiological pH the anchoring group is the aminic one, in both cases the system slowly evolves towards an N,O chelating mode. In 1/2 Pt/Fru-Hgly molar ratio the only coordination site is nitrogen atom while the carboxylic oxygen is not involved in metal coordination.  相似文献   

7.
A Eastman 《Biochemistry》1986,25(13):3912-3915
Intrastrand cross-links represent the majority of modifications in DNA resulting from interaction with the cancer chemotherapeutic drug cis-diamminedichloroplatinum(II) (cis-DDP). These adducts were recently characterized although several discrepancies remained to be resolved. In these studies, [3H]-cis-dichloro(ethylenediamine)platinum(II) (cis-DEP) was used because of the convenience of the radiolabel; this analogue produces adducts at identical sites in DNA as cis-DDP. Both drugs platinate the following sequences in DNA: GG, 65%; AG, 25%; GNG, 6%. The adduct at AG sequences invariably has adenine on the 5'-terminus of the dimer. The present enzyme digestion protocol included P1 nuclease, which produced complete digestion rather than as previously reported. The frequency of platination at GG was too high to be explained by an initial monofunctional platination at any guanine. However, direct bifunctional attack preferentially at GG was obviated because monofunctional adducts could be trapped with thiourea at short time periods. After short incubations, with cis-DEP and removal of unreacted drug, the monofunctional adducts slowly rearranged to bifunctional adducts. It is suggested that this evolution of adducts may result from the drug "walking" along the double helix, a phenomenon that does not appear to occur in single-stranded DNA.  相似文献   

8.
The interaction of Rh2(II)(acetate)4, cis-[Rh(III)(en)2Cl2] Cl (en = ethylenediamine) and [Rh(III) (NH3)5Cl]Cl2 with calf thymus DNA has been studied at various r values [formula; see text] and interaction times. Electronic spectra, melting and cooling curves and sedimentation data indicate no interaction of the acetate complex with DNA, except in the case of a high r value and long interaction time. The other two complexes have been found to interact with the phosphate groups, thus stabilizing the macromolecule.  相似文献   

9.
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2'-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2'-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first beta sheet and second beta sheet of RNase HI of Escherichia coli might participate in substrate binding.  相似文献   

10.
The interaction of native DNA with dimethyltin(IV) species   总被引:1,自引:0,他引:1  
The reaction of aqueous native DNA (calf thymus) with the solvated organotin(IV) species [(CH3)2SnCl2(C2H5OH)n], as well as with [(CH3)2Sn(OH)(H2O)n]+ and (CH3)2Sn(OH)2 (i.e., the hydrolysis products of aqueous (CH3)2SnCl2 at pH approximately 5 and pH approximately 7.4 respectively), was investigated by 119Sn M?ssbauer spectroscopy. The addition of [(CH3)2SnCl2(C2H5OH)n] to DNA yielded a solid product, possibly (CH3)2Sn(DNA phosphodiester)2, where the environment of the tin atom is trans-octahedral with linear CSnC skeleton, and the equatorial atoms may consist of oxygen or nitrogen from water as well as from the nucleic acid constituents. No interaction with DNA apparently takes place due to hydrolyzed dimethyltin(IV) species, which occur in aqueous phases at approximate physiological pH values. The reaction pathway is then assumed to require weakly solvated, easily dissociable species such as [(CH3)2SnCl2(C2H5OH)n], which would imply in vivo reactivity of cellular DNA with organotins from hydrophobic sites.  相似文献   

11.
The modification of the double-stranded poly(G).poly(C) complex by cis-diamminedichloroplatinum(II) was studied by two modes: the action of cis-DDP on poly(G) before formation of the duplex with poly(C) and that on the prepared duplex. It was shown that in the latter case modification disordered the integrity of the duplex only negligibly at rb less than or equal to 0.05 and led to improved interferon-inducing and antiviral activity tested on mice infected by Influenza and Herpes viruses.  相似文献   

12.
The presence of the C.C mispair in a defined duplex oligodeoxynucleotide enhanced its capacity to serve as a substrate for highly purified human DNA methyltransferase. Analysis of tritiated reaction products showed that the C.C mispair acted as a "methylation acceptor" in that it was itself rapidly methylated. The m5C.G base pair also enhanced the capacity of the oligodeoxynucleotide to serve as a substrate for the enzyme. However, this complementary base pair was found to act as a "methylation director". That is, the presence of the m5C in one strand induced the enzyme to rapidly methylate at the cytosine residue on the opposite strand in an adjacent C.G base pair.  相似文献   

13.
The sequence specificity and intensity of DNA damage induced by six peptide-tethered platinum complexes was compared to cisplatin and Pt(en)Cl(2). DNA damage was investigated in pUC19 plasmid and in intact HeLa cells, and quantitatively analyzed using a Taq DNA polymerase/linear amplification assay. The DNA sequence specificity of the peptide-platinum compounds was found to be very similar to cisplatin and Pt(en)Cl(2), with runs of consecutive guanines being the most intensely damaged sites. The observed reactivity of the peptide-platinum complexes towards plasmid DNA was lower compared to cisplatin and Pt(en)Cl(2), with the glycine-tethered complex 3 and the phenylalanine-tethered complex 4 producing the highest relative damage intensity, followed by (in decreasing order) lysine-tethered (5), arginine-tethered (6), serine-tethered (7) and glutamate-tethered (8). The reactivity of the peptide-platinum complexes towards cellular DNA was also lower compared to cisplatin and Pt(en)Cl(2). For most investigated complexes, the relative damage intensities were found to be similar in cells compared to plasmid DNA, but were greatly reduced for 3 and 4. The lysine-tethered 5 complex produced the highest DNA damage intensity in cells followed by (in decreasing order) 6, 7, 3, 4 and 8.  相似文献   

14.
The binding of cis-Pt(II) diammine (cis-DP) to double-stranded DNA was studied with several kinked conformations that can accommodate the formation of a square planar complex. Molecular mechanics (MM) calculations were performed to optimize the molecular fit. These results were combined with quantum mechanical (QM) calculations to ascertain the relative energetics of ligand binding through water vs direct binding of the phosphate to the ammine and platinum, and to guide the selection of DNA conformations to model complex formation. Based on QM and MM calculations, models are proposed that may be characterized by several general features. A structure involving hydrogen bonding between each ammine and distinct adjacent phosphate groups, referred to as closed conformation (CC), has already been reported. This is also found in the crystal structure of small dimers. We report alternative conformations that may be important in platination of duplex DNA. They are characterized by an intermediate conformation (IC), involving hydrogen bonding between one ammine and phosphate group, and an open conformation (OC), without ammine phosphate hydrogen bonding. The IC and OC can be stabilized by water bridges in the space between the ammine and the phosphate groups. Sugar puckers alternate from the type C(2')-endo or C(1')-exo (S), to the type C(3')-endo or C(2')-exo (N), with intermediate types near O(1')-endo (O). In general, the sugar puckers alternate from S to N to S through the platinated region (3'-TpG*pG*p-5'), with the complexed strand exhibiting, (3')-S*-N*-S-(5') alternation, while the complementary strand shows either (3')-S*-N*-S-(5') or (3')-S*-N*-O-(5') alternation. In both the OC and IC, a hydrogen bond is found between the ammine and O4(T) on thymine (T) at the (3') end, adjacent to the complex site. There is a continuous range of backbone conformations through the platinated region which relate the OC to the IC. The models presented suggest that the dynamics of the binding of the cis-Pt(II)-diammines to adjacent N7(G) in double-stranded DNA may encompass several conformational possibilities, and that water bridges may play a roll in supporting open and intermediate conformations. Proton-proton distances are reported to assist in the experimental determination of conformations.  相似文献   

15.
The results of a study of the binding to DNA of substituted cis-Pt(II) diammines, (cis-DP) are presented. Computer modeling of a series of cis-Pt(NH2R)2(+2)--where R = H, CH3, cyclopropyl, cyclobutyl, and cyclopentyl--to N7(G) atoms of two adjacent intrastrand guanine bases in a square planar complex in a pentamer duplex of DNA were performed. The stability of the complexes is studied by calculating the relative conformational energy of the cis-DP-DNA complexes with molecular mechanics (MM) and the intrinsic binding energy, which is the relative binding energy for ligand replacement in the presence of the substituents R with quantum mechanics. In the model, the receptor site geometry and the conformation of the DNA is changed little in the accommodation of the series of monosubstituted diammines. These diammines bind to one family of DNA conformations, denoted as IC in a previous study, and this suggests that a common conformational feature in the DNA may exist to explain the smooth trend in activity. The slight increase in van der Waals energy resulting from an increasing number of atoms in the substituents is countered by a larger decrease in the ligand replacement energy as the substituent increases in size. This overall decrease in relative energy is consistent with the slight decrease in activity as the substituent size increases.  相似文献   

16.
The interactions of the steroidal and nonsteroidal estrogen-platinum (Pt) (II)-based anticancer drugs 16beta-hydroxymethyl-16alpha-[8-(2-pyridin-2-yl-ethylamino)-3,6-dioxaoctyl]-1,3,5(10)-estratrien-3,17betadiol dichloroplatinum (II) (JPM-39), 4-[6-(2'-pyridylethylamino)-butyloxy)-phenyl]-7-methoxy-2,2-dimethyl-3-phenyl-chroman dichloroplatinum (II) (ATG-99), and 1-[(2-aminoethyl)amino]-9,10,10-tris(4-hydroxyphenyl)-9-decene dichloroplatinum (II) (GEB-28) with calf-thymus DNA in vitro using constant DNA concentration and various drug levels were studied. Fourier transform infrared (FTIR) and circular dichroism (CD) were studied with calf-thymus DNA in vitro using constant DNA concentration and various drug levels. FTIR, UV-visible, and CD spectroscopic methods were used to characterize the drug binding mode, the binding constant, and structural variations of DNA in aqueous solution. Spectroscopic evidence showed that the various Pt-based drugs bind indirectly to the major and minor grooves of DNA duplex with some degree of drug-phosphate interaction. The overall binding constants for JPM-39, GEB-28, and ATG-99 are K(JPM-39) = 4.2 (+/-0.75) x 10(3) M(-1), K(GEB-28) = 3.4 (+/-0.65) x 10(3) M(-1), and K(ATG-99) = 2.1 (+/-0.45) x 10(3) M(-1). DNA aggregation occurs at high drug concentration, while DNA remains in the B-family structure.  相似文献   

17.
The interaction of sildenafil citrate (Viagra) with DNA was studied by using an electrochemical DNA biosensor. The binding mechanism of sildenafil citrate was elucidated by using constant current potentiometry and differential pulse voltammetry at DNA-modified glassy carbon electrode. The decrease in the guanine oxidation peak area or peak current was used as an indicator for the interaction in 0.2M acetate buffer (pH 5). The binding constant (K) values obtained were 2.01+/-0.05 x 10(5) and 1.97+/-0.01 x 10(5)M(-1) with constant current potentiometry and differential pulse voltammetry, respectively. A linear dependence of the guanine peak area or peak current was observed within the range of 1-40 microM sildenafil citrate with slope=-2.74 x 10(-4)s/microM, r=0.989 and slope=-2.78 x 10(-3)microA/microM, r=0.995 by using constant current potentiometry and differential pulse voltammetry, respectively. Additionally, binding constant values for sildenafil citrate-DNA interaction were determined for the pH range of 4-8 and in biological fluids (serum and urine) at pH 5. The influence of sodium and calcium ions was also studied to elucidate the mechanism of sildenafil citrate-DNA interaction under different solution conditions. The present study may prove to be helpful in extending our understanding of the anticancer activity of sildenafil citrate from cellular to DNA level.  相似文献   

18.
Shen HY  Liu YQ  Gao J  Zhen HM  Zhu N  Li J 《DNA and cell biology》2011,30(4):255-264
In vitro studies on the interactions between native herring sperm DNA (HS-DNA) and melamine as well as its related compounds (MARCs), that is, ammeline, ammelide, and cyanuric acid, have been investigated by spectrophotometric, spectrofluorometric, melting temperature, and viscosimetric techniques. It was found that any of the MARCs might interact with HS-DNA by a groove mode of binding via hydrogen bonds. The interaction constants between any of the MARCs and HS-DNA were at 10?-10? L mol?1, determined by both spectrophotometric and spectrofluorometric methods. The thermodynamic studies suggested that the interaction processes were exothermic favored (ΔH?相似文献   

19.
The interaction between DNA and members of series of bivalent imidazole compounds, monovalent and bivalent imidazolium compounds, and monovalent and bivalent tetrazolium compounds, which had been synthesized and evaluated for their anti-Plasmodium activity, has been examined using the displacement of SYBR Green I as a measure of competitive binding. The degree of interaction with DNA appears to be dependent on both hydrophobic and charge-pairing interactions.  相似文献   

20.

Candida spp. are leading causes of opportunistic mycoses, including life-threatening hospital-borne infections, and novel antifungals, preferably aiming targets that have not been used before, are constantly needed. Hydrazone- and guanidine-containing molecules have shown a wide range of biological activities, including recently described excellent antifungal properties. In this study, four bis-guanylhydrazone derivatives (BG1–4) were generated following a previously developed synthetic route. Anti-Candida (two C. albicans, C. glabrata, and C. parapsilosis) minimal inhibitory concentrations (MICs) of bis-guanylhydrazones were between 2 and 15.6 μg/mL. They were also effective against preformed 48-h-old C. albicans biofilms. In vitro DNA interaction, circular dichroism, and molecular docking analysis showed the great ability of these compounds to bind fungal DNA. Competition with DNA-binding stain, exposure of phosphatidylserine at the outer layer of the cytoplasmic membrane, and activation of metacaspases were shown for BG3. This pro-apoptotic effect of BG3 was only partially due to the accumulation of reactive oxygen species in C. albicans, as only twofold MIC and higher concentrations of BG3 caused depolarization of mitochondrial membrane which was accompanied by the decrease of the activity of fungal mitochondrial dehydrogenases, while the activity of oxidative stress response enzymes glutathione reductase and catalase was not significantly affected. BG3 showed synergistic activity with amphotericin B with a fractional inhibitory concentration index of 0.5. It also exerted low cytotoxicity and the ability to inhibit epithelial cell (TR146) invasion and damage by virulent C. albicans SC5314. With further developments, BG3 may further progress in the antifungal pipeline as a DNA-targeting agent.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号