首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In the heart, individual cardiac muscle cells are linked by gap junctions. These junctions form low resistance pathways along which the electrical impulse flows rapidly and repeatedly between all the cells of the myocardium, ensuring their synchronous contraction. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera were raised to three synthetic peptides, each matching different cytoplasmically exposed portions of the sequence of connexin43, the major gap-junctional protein reported in the heart. The specificity of each antiserum for the peptide to which it was raised was established by dot blotting. New methods were developed for isolating enriched fractions of gap junctions from whole heart and from dissociated adult myocytes, in which detergent-treatment and raising the temperature (potentially damaging steps in previously described techniques) are avoided. Analysis of these fractions by SDS-polyacrylamide gel electrophoresis revealed major bands at 43 kDa (matching the molecular mass of connexin43) and at 70 kDa. Western blot experiments using our antisera indicated that both the 43-kDa and the 70-kDa bands represent cardiac gap-junctional proteins. Pre-embedding immunogold labelling of isolated gap junctions and post-embedding immunogold labelling of Lowicryl-embedded whole tissue demonstrated the specific binding of the antibodies to ultrastructurally defined gap junctions. One antiserum (raised to residues 131–142) was found to be particularly effective for cytochemical labelling. Using this antiserum for immunofluorescence labelling in combination with confocal scanning laser microscopy enabled highly sensitive detection and three-dimensional mapping of gap junctions through thick slices of cardiac tissue. By means of the serial optical sectioning ability of the confocal microscope, images of the entire gap junction population of complete en face-viewed disks were reconstructed. These reconstructions reveal the presence of large junctions arranged as a peripheral ring around the disk, with smaller junctions in an interior zone: an arrangement that may facilitate efficient intercellular transfer of current. By applying our immunolabelling techniques to tissue from hearts removed from transplant patients with advanced ischaemic heart disease, we have demonstrated that gap junction distribution between myocytes at the border zone of healed infarcts is markedly disordered. This abnormality may contribute to the genesis of reentrant arrhythmias in ischaemic heart disease.  相似文献   

2.
A 135-kd membrane protein of intercellular adherens junctions.   总被引:41,自引:2,他引:39       下载免费PDF全文
T Volk  B Geiger 《The EMBO journal》1984,3(10):2249-2260
We report here on a new 135-kd membrane protein which is specifically associated with intercellular adherens-type junctions. This surface component was identified by a monoclonal antibody, ID-7.2.3, raised against detergent-extracted components of membranes of chicken cardiac muscle rich in intercalated discs. The antibodies stain extensively adherens junctions in intact cardiac muscle and in lens, as well as in cultured cells derived from these tissues. In living cultured cells only very little immunolabelling was obtained with ID-7.2.3 antibodies, probably due to the limited accessibility of the antibodies to the intercellular gap. However, upon the removal of extracellular Ca2+ ions a dissociation of the junction occurred, leading to the rapid exposure of the 135-kd protein. Immunoelectron microscopic labelling of EGTA-treated, or detergent-permeabilized cells indicated that the antigen is found along the plasma membrane and highly enriched in contact areas. Double immunolabelling for both the 135-kd protein and vinculin pointed to the close association of the two in intercellular junctions and to the apparent absence of the former protein from the vinculin-rich focal contacts of cultured cells and from dense plaque of smooth muscle. Immunoblotting indicated that the 135-kd protein is present in many tissues but is particularly enriched in heart, lens and brain.  相似文献   

3.
Analysis by SDS-PAGE of gap junction fractions isolated from heart suggests that the junctions are comprised of a protein with an Mr 43,000. Antibodies against the electroeluted protein and a peptide representing the 20 amino terminal residues bind specifically on immunoblots to the 43-kD protein and to the major products arising from proteolysis during isolation. By immunocytochemistry, the protein is found in ventricle and atrium in patterns consistent with the known distribution of gap junctions. Both antibodies bind exclusively to gap junctions in fractions from heart examined by EM after gold labeling. Since only domains of the protein exposed at the cytoplasmic surface should be accessible to antibody, we conclude that the 43-kD protein is assembled in gap junctions with the amino terminus of the molecule exposed on the cytoplasmic side of the bilayer, that is, on the same side as the carboxy terminus as determined previously. By combining proteolysis experiments with data from immunoblotting, we can identify a third cytoplasmic region, a loop of some 4 kD between membrane protected domains. This loop carries an antibody binding site. The protein, if transmembrane, is therefore likely to cross the membrane four times. We have used the same antisera to ascertain if the 43-kD protein is involved in cell-cell communication. The antiserum against the amino terminus blocked dye coupling in 90% of cell pairs tested; the antiserum recognizing epitopes in the cytoplasmic loop and cytoplasmic tail blocked coupling in 75% of cell pairs tested. Preimmune serum and control antibodies (one against MIP and another binding to a cardiac G protein) had no or little effect on dye transfer. Our experimental evidence thus indicates that, in spite of the differences in amino acid sequence, the gap junction proteins in heart and liver share a general organizational plan and that there may be several domains (including the amino terminus) of the molecule that are involved in the control of junctional permeability.  相似文献   

4.
Rat heart and other organs contain mRNA coding for connexin43, a polypeptide homologous to a gap junction protein from liver (connexin32). To provide direct evidence that connexin43 is a cardiac gap junction protein, we raised rabbit antisera directed against synthetic oligopeptides corresponding to two unique regions of its sequence, amino acids 119-142 and 252-271. Both antisera stained the intercalated disc in myocardium by immunofluorescence but did not react with frozen sections of liver. Immunocytochemistry showed anti-connexin43 staining of the cytoplasmic surface of gap junctions in isolated rat heart membranes but no reactivity with isolated liver gap junctions. Both antisera reacted with a 43-kD polypeptide in isolated rat heart membranes but did not react with rat liver gap junctions by Western blot analysis. In contrast, an antiserum to the conserved, possibly extracellular, sequence of amino acids 164-189 in connexin32 reacted with both liver and heart gap junction proteins on Western blots. These findings support a topological model of connexins with unique cytoplasmic domains but conserved transmembrane and extracellular regions. The connexin43-specific antisera were used by Western blots and immunofluorescence to examine the distribution of connexin43. They demonstrated reactivity consistent with gap junctions between ovarian granulosa cells, smooth muscle cells in uterus and other tissues, fibroblasts in cornea and other tissues, lens and corneal epithelial cells, and renal tubular epithelial cells. Staining with the anti-connexin43 antisera was never observed to colocalize with antibodies to other gap junctional proteins (connexin32 or MP70) in the same junctional plaques. Because of limitations in the resolution of the immunofluorescence, however, we were not able to determine whether individual cells ever simultaneously express more than one connexin type.  相似文献   

5.
Immunocytochemical investigations have previously shown that antibodies specific for mammal connexins labeled in situ rat and mouse brain gap junctions. However brain gap-junction proteins have neither been identified with certainty, nor purified. By immunoblotting, anti-peptide antibodies directed against rat heart connexin 43 (CX43) detect a major protein of 41 kDa in rat brain homogenates. The specificity of these antibodies made it possible to establish an affinity-chromatography purification procedure of the 41-kDa protein. Purified antibodies specific for the sequence SAEQNRMGQ (residues 314-322) of rat heart CX43 were covalently bound to a protein-A-Sepharose-CL-4B matrix. Rat brain homogenates were recycled through the immunomatrix and the material specifically bound to the matrix was then competitively eluted with the peptide SAEQNRMGQY. Analysis by SDS/PAGE of eluates demonstrated that they contain a 41-kDa protein associated with low amounts of high-molecular-mass proteins. By immunoblotting, these proteins were shown to be specifically recognized by antibodies directed against residues 5-17, 55-56, and 314-322 of rat heart CX43. The NH2-terminal partial sequence for the 41-kDa protein was determined by microsequencing and shown to be similar to alpha 1 connexins. This is the first successful purification of a junctional protein from brain tissue and provides direct evidence that the 41-kDa protein is a CX43 gene product.  相似文献   

6.
The membrane topology and quaternary structure of rat cardiac gap junction ion channels containing alpha 1 connexin (i.e. Cx43) have been examined using anti-peptide antibodies directed to seven different sites in the protein sequence, cleavage by an endogenous protease in heart tissue and electron microscopic image analysis of native and protease-cleaved two-dimensional membrane crystals of isolated cardiac gap junctions. Specificity of the peptide antibodies was established using dot immunoblotting, Western immunoblotting, immunofluorescence and immunoelectron microscopy. Based on the folding predicted by hydropathy analysis, five antibodies were directed to sites in cytoplasmic domains and two antibodies were directed to the two extracellular loop domains. Isolated gap junctions could not be labeled by the two extracellular loop antibodies using thin-section immunogold electron microscopy. This is consistent with the known narrowness of the extracellular gap region that presumably precludes penetration of antibody probes. However, cryo-sectioning rendered the extracellular domains accessible for immunolabeling. A cytoplasmic "loop" domain of at least Mr = 5100 (residues (101 to 142) is readily accessible to peptide antibody labeling. The native Mr = 43,000 protein can be protease-cleaved on the cytoplasmic side of the membrane, resulting in an Mr approximately 30,000 membrane-bound fragment. Western immunoblots showed that protease cleavage occurs at the carboxy tail of the protein, and the cleavage site resides between amino acid residues 252-271. Immunoelectron microscopy demonstrated that the Mr approximately 13,000 carboxy-terminal peptide(s) is released after protease cleavage and does not remain attached to the Mr approximately 30,000 membrane-bound fragment via non-covalent interactions. Electron microscopic image analysis of two-dimensional membrane crystals of cardiac gap junctions revealed that the ion channels are formed by a hexagonal arrangement of protein subunits. This quaternary arrangement is not detectably altered by protease cleavage of the alpha 1 polypeptide. Therefore, the Mr approximately 13,000 carboxyterminal domain is not involved in forming the transmembrane ion channel. The similar hexameric architecture of cardiac and liver gap junction connexins indicates conservation in the molecular design of the gap junction channels formed by alpha or beta connexins.  相似文献   

7.
Baldwin KM  Hakim RS 《Tissue & cell》1999,31(2):195-201
The proteins that make up arthropod gap and septate junctions have not been identified with any certainty. Several candidate proteins for both types of junctions have been proposed in the literature, but there has been no agreement on any of these. Arthropod gap junctions do not label with antibodies to vertebrate gap junction connexins; it thus appears that unrelated proteins form these rather similar structures. Gap junctions inManduca sextamidgut epithelium are unusual since they function only during the molt and are non-functioning during the larval instars. We have developed a preparation from this tissue that is highly enriched in both gap and smooth septate junctions when examined by electron microscopy. SDS-PAGE gels of this preparation have two major protein bands, at 75 and 90 kDa. The presence of gap junctions correlates best with the 75 kDa protein and smooth septate junctions with the 90 kDa protein. Further, the 75 kDa band is stained by an antibody to a putative gap junction protein fromC. elegans. We propose that the 75 kDa protein is a major structural component of gap junctions inManduca sextamidgut epithelium and that the 90 kDa protein forms the smooth septate junctions.  相似文献   

8.
Summary According to the sequence of connexin 43, a cardiac gap junctional protein, the domain contained within residues 314–322 is located 60 amino acids away from the carboxy-terminus. Antibodies raised to a peptide corresponding to this domain label a unique 43-kD protein on immunoblots of both purified gap junctions and whole extracts from rat heart. Immunofluorescence investigations carried out on mammal heart sections reveal a pattern consistent with the known distribution of intercalated discs. Immunogold labeling performed with ultrathin frozen sections of rat heart or partially purified rat heart gap junctions demonstrate that antigenic determinants are associated exclusively with the cytoplasmic surfaces of gap junctions.The antibodies were shown to cross-react with a 43-kD protein on immunoblots of whole extracts from human, mouse and guinea pig heart. However, no labeling was seen when heart of lower vertebrates such as chicken, frog and trout, was investigated. These results, confirmed by immunofluorescence investigations, were interpreted as a loss of antigenic determinants due to sequence polymorphism of cardiac connexin 43.Proteins ofM r 43 and 41 kD, immunologically related to cardiac connexin 43, were detected in immunoblots of mouse and rat brain whole extracts. mRNAs, homologous to those of cardiac connexin 43 and of the same size (3.0 kb), are also present in brain. Immunofluorescence investigations with primary cultures of unpermeabilized and permeabilized mouse neural cells showed that the antigenic determinants recognized by the antibodies specific for connexin 43 are cytoplasmic and that the labeling observed between clustered flat cells, is punctate, as expected for gap junctions. Double labeling experiments demonstrated that the immunoreactivity is associated with GFAP-positive cells, that is to say, astrocytes.  相似文献   

9.
Summary SDS-polyacrylamide gel electrophoresis and immunoblotting were used to investigate inter- and intramolecular disulfide bonds to connexin 43 (the cardiac gap junctional protein) in isolated rat heart gap junctions and in whole heart fractions. In gap junctions isolated in the absence of alkylating agent, connexin 43 molecules are cross-linked by disulfide bonds. The use of iodoacetamide (100mm) for the first steps of isolation procedure prevents the formation of these artifactual linkages. Investigation of connexin 43 in whole heart fractions by means of antibodies confirms the results obtained with isolated gap junctions; that is, connexin 43 molecules are not interconnected with disulfide bridges. In whole heart fractions treated with alkylating agents, a 38 kD protein, immunologically related to connexin 43, and containing intramolecular disulfide bonds is detected. It is hypothesized that this protein might be a folded form of connexin 43, a precursory form of the molecules embedded in the gap junctions.The abbreviations used are BSA bovine serum albumin - EDTA ethylene diamine tetra-acetic acid - IAA iodoacetamide - NEM N-ethylmaleimide - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsfonyl fluoride - SDS sodium dodecyl sulfate - Tris trishydroxymethyl-aminomethane  相似文献   

10.
The mechanisms that determine whether neural stem cells remain in a proliferative state or differentiate into neurons or glia are largely unknown. Here we establish a pivotal role for gap junction-mediated intercellular communication in determining the proliferation and survival of mouse neural progenitor cells (NPCs). When cultured in the presence of basic fibroblast growth factor (bFGF), NPCs express the gap junction protein connexin 43 and are dye-coupled. Upon withdrawal of bFGF, levels of connexin 43 and dye coupling decrease, and the cells cease proliferating and differentiate into neurons; the induction of gap junctions by bFGF is mediated by p42/p44 mitogen-activated protein kinases. Inhibition of gap junctions abolishes the ability of bFGF to maintain NPCs in a proliferative state resulting in cell differentiation or cell death, while overexpression of connexin 43 promotes NPC self-renewal in the absence of bFGF. In addition to promoting their proliferation, gap junctions are required for the survival of NPCs. Gap junctional communication is therefore both necessary and sufficient to maintain NPCs in a self-renewing state.  相似文献   

11.
In the cardiac muscle, the electrical coupling of myocytes by means of gap (or communicating) junctions, allows the action potentials to be propagated. Connexin 43 (CX 43) is the major constitutive protein of the gap junctions in the mammalian myocardium. In this organ, the abundance of CX 43 and of its messenger, as well as the spatial expression of this protein, are developmentally regulated. These findings are complemented by the results presented in this article, which deals with the distribution of CX 43 in the ventricular myocytes of mouse heart during differentiation, between the 11 days post coitum embryo stage and adulthood. By immunoelectron microscopy experiments on ultrathin sections of cardiac ventricular tissue of one-week-old mouse, we have provided confirmation that the anti-CX 43 antibodies used here specifically recognized the gap junctions. Double labeling immunofluorescence experiments have been undertaken to localize, within the same cells, either CX 43 and desmin, or CX 43 and Con A or WGA receptor sites. From the earliest stage investigated (11 days post coitum) onwards, expression of CX 43 is always associated with desmin-positive cells, that is, with the myocytes. Up to birth, there is in the ventricular wall a gradient of expression of CX 43 which is superimposable on a gradient of expression of desmin. Immunoreactivity to anti-CX 43 and anti-desmin antibodies is high in the sub-endocardial trabeculae and low (or even undetectable for CX 43, in the early stages) in the sub-epicardial cell layers. In the embryonic stages, the expression sites of CX 43 are visible in the form of small dots, whose abundance increases as development proceeds. During these stages, the immunoreactive sites are distributed in a relatively homogeneous pattern throughout the membrane of the myocytes. One week after birth, the CX 43 expression is restricted to the two ends of the myocytes (where the intercalated discs develop), and the adjacent lateral regions. This polarization of CX 43 is more pronounced at the two and three weeks post natal stages and in the fully differentiated ventricular myocytes (adult stage) CX 43 is only present in the intercalated discs.  相似文献   

12.
Myotonic dystrophy (DM) is one of the most prevalent muscular diseases in adults. The molecular basis of this autosomal disorder has been identified as the expansion of a CTG repeat in the 3' untranslated region of a gene encoding a protein kinase (DMPK). The pathophysiology of the disease and the role of DMPK are still obscure. It has been previously demonstrated that DMPK is localized at neuromuscular junctions, myotendinous junctions, and terminal cisternae of the sarcoplasmic reticulum (SR), in the skeletal muscle, and at intercalated discs in the cardiac muscle. We report here new findings about specific localization of DMPK in the heart. Polyclonal antibodies raised against a peptide sequence of the human DMPK were used to analyze the subcellular distribution of the protein in rat papillary muscles. Confocal laser microscopy revealed a strong although discontinuous reactivity at intercalated discs, together with transverse banding on the sarcoplasm. At higher resolution with immunogold electron microscopy, we observed that DMPK is localized at the cytoplasmic surface of junctional and extended junctional sarcoplasmic reticulum, suggesting that DMPK is involved in the regulation of excitation-contraction coupling. Along the intercalated disc, DMPK was found associated with gap junctions, whereas it was absent in the two other kinds of junctional complexes (fasciae adherentes and desmosomes). Immunogold labeling of gap junction purified fractions showed that DMPK co-localized with connexin 43, the major component of this type of intercellular junctions, suggesting that DMPK plays a regulatory role in the transmission of signals between myocytes.  相似文献   

13.
Occurrence and immunolocalization of plectin in tissues   总被引:23,自引:12,他引:11       下载免费PDF全文
Various tissues from rat were examined for the occurrence and cellular localization of plectin, a 300,000-dalton polypeptide component present in intermediate filament-enriched cytoskeletons prepared from cultured cells by treatment with nonionic detergent and high salt solution. The extraction of liver, heart, skeletal muscle, tongue, and urinary bladder with 1% Triton/0.6 M KCl yielded insoluble cell residues that contained polypeptides of Mr 300,000 in variable amounts. These high Mr polypeptide species and a few bands of slightly lower Mr (most likely proteolytic breakdown products) were shown to react with antibodies to rat glioma C6 cell plectin using immunoautoradiography and/or immunoprecipitation. By indirect immunofluorescence microscopy using frozen sections (4 micron) of stomach, kidney, small intestine, liver, uterus, urinary bladder, and heart, antigens reacting with antibodies to plectin were found in fibroblast, endothelial, smooth, skeletal, and cardiac muscle, nerve, and epithelial cells of various types. Depending on the cell type, staining was observed either throughout the cytoplasm, or primarily at the periphery of cells, or in both locations. In hepatocytes, besides granular staining at the cell periphery, conspicuous staining of junctions sealing bile canaliculi was seen. In cardiac muscle strong staining was seen at intercalated disks and, as in skeletal muscle, at Z-lines. In cross sections through smooth muscle, most strikingly of urinary bladder, antibodies to plectin specifically decorated regularly spaced, spot-like structures at the cell periphery. By immunoelectron microscopy using the peroxidase technique, antiplectin-reactive material was found along cell junctions of hepatocytes and was particularly enriched at desmosomal plaques and structures associated with their cytoplasmic surfaces. A specific immunoreaction with desmosomes was also evident in sections through tongue. In cardiac muscle, besides Z-lines, intercalated disks were reactive along almost their entire surface, suggesting that plectin was associated with the fascia adherens, desmosomes, and probably gap junctions. In smooth muscle cells, regularly spaced lateral densities probably representing myofilament attachment sites were immunoreactive with plectin antibodies. The results show that plectin is of widespread occurrence with regard to tissues and cell types. Furthermore, immunolocalization by light and electron microscopy at junctional sites of various cell types and at attachment sites of cytoplasmic filaments in epithelial and muscle cells suggests that plectin possibly plays a universal role in the formation of cell junctions and the anchorage of cytoplasmic filaments.  相似文献   

14.
The COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID-19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.  相似文献   

15.
Direct communication of neighboring cells by gap junction channels is essential for the development of tissues and organs in the body. Whereas vertebrate gap junctions are composed of members of the connexin family of transmembrane proteins, in invertebrates gap junctions consist of Innexin channel proteins. Innexins display very low sequence homology to connexins. In addition, very little is known about their cellular role during developmental processes. In this report, we examined the function and the distribution of Drosophila Innexin 2 protein in embryonic epithelia. Both loss-of-function and gain-of-function innexin 2 mutants display severe developmental defects due to cell death and a failure of proper epithelial morphogenesis. Furthermore, immunohistochemical analyses using antibodies against the Innexins 1 and 2 indicate that the distribution of Innexin gap junction proteins to specific membrane domains is regulated by tissue specific factors. Finally, biochemical interaction studies together with genetic loss- and gain-of-function experiments provide evidence that Innexin 2 interacts with core proteins of adherens and septate junctions. This is the first study, to our knowledge, of cellular distribution and protein-protein interactions of an Innexin gap junctional channel protein in the developing epithelia of Drosophila.  相似文献   

16.
Intercellular junctions which are similar in ultrastructure and protein composition to typical desmosomes have so far only been found in epithelial cells and in heart tissue, specifically in the intercalated disks of cardiac myocytes and at cell boundaries between Purkinje fiber cells. In epithelial cells the cytoplasmic side of desmosomes, the 'desmosomal plaque', represents a specific attachment structure for the anchorage of intermediate filaments (IF) of the cytokeratin type. Cardiac myocytes do not contain cytokeratin filaments. In primary cultures of rat cardiac myocytes, we have examined by immunofluorescence and electron microscopy, using single and double label techniques, whether other types of IF are attached to the desmosomal plaques of the heart. Antibodies to desmoplakin, the major protein of the desmosomal plaque, have been used to label specifically the desmosomal plaques. It is shown that the desmoplakin-containing structures are often associated with IF stained by antibodies to desmin, i.e., the characteristic type of IF present in these cells. Like cytokeratin filaments in epithelial cells, desmin filaments attach laterally to the desmosomal plaque. They also remain attached to these plaques after endocytotic internalization of desmosomal domains by treatment of the cells with EGTA. These desmin filaments do not appear to attach to junctions of the fascia adherens type and to nexuses (gap junctions). These observations show that anchorage at desmosomal plaques is not restricted to IF of the cytokeratin type and that IF composed of either cytokeratin or desmin, specifically attach, in a lateral fashion, to desmoplakin-containing regions of the plasma membrane. We conclude that special domains exist in these two IF proteins that are involved in binding to the desmosomal plaque.  相似文献   

17.
《The Journal of cell biology》1989,109(4):1865-1875
Extracts from atrial and ventricular heart tissue of several species (chicken, rat, sheep, and cow) are strongly mitogenic for chicken skeletal myoblasts, with the highest apparent concentration of biological activity in the atrial extracts. Using several approaches (biological activity assay and biochemical and immunological analyses), we have established that (a) all cardiac extracts contain an 18,000-D peptide which is identified as basic fibroblast growth factor (bFGF) since it elutes from heparin-Sepharose columns at salt concentrations greater than 1.4 M and is recognized by bFGF-specific affinity-purified antibodies; (b) bFGF is more abundant in the atrial extracts in all species so examined; (c) avian cardiac tissue extracts contain the highest concentration of immunoreactive bFGF; and (d) avian ventricles contain a higher relative molecular mass (23,000-D) bFGF-like peptide which is absent from atrial extracts. Examination of frozen bovine cardiac tissue sections by indirect immunofluorescence using anti-bFGF antibodies shows bFGF-like reactivity associated with nuclei and intercalated discs of muscle fibers. There is substantial accumulation of bFGF around atrial but not ventricular myofibers, resulting most likely from more extensive endomysium in the atria. Blood vessels and single, nonmuscle, connective tissue cells react strongly with the anti- bFGF antibodies. Higher bFGF content and pericellular distribution in atrial muscles suggest a correlation with increased regenerative potential in this tissue. Distribution within the myofibers is intriguing, raising the possibility for an intimate and continuous involvement of bFGF-like components with normal myocardial function.  相似文献   

18.
Memory in the nervous system is essentially a network effect, resulting from activity-dependent synaptic modification in a network of neurons. Like the nervous system, the heart is a network of cardiac cells electrically coupled by gap junctions. The heart too has memory, termed cardiac memory, whereby the effect of an external electrical activation persists long after the presentation of stimulus is terminated. We have earlier proposed that adaptation of gap junctions, as a function of membrane voltages of the cells that are coupled by the gap junctions, is related to cardiac memory [V.S. Chakravarthy, J. Ghosh, On Hebbian-like adaption in heart muscle: a proposal for "Cardiac Memory", Biol. Cybern. 76 (1997) 207, J. Krishnan, V.S. Chakravarthy, S. Radhakrishnan, On the role of gap junctions on cardiac memory effect, Comput. Cardiol. 32 (2005) 13]. Using the proposed mechanism, we demonstrate memory effect using computational models of interacting cell pairs. In this paper, we address the biological validity of the proposed mechanism of gap junctional adaptation. It is known from electrophysiology of gap junctions that the conductance of these channels adapts as a function of junctional voltage. At a first sight, this form of voltage dependence seems to be at variance with the form required by our mechanism. But we show, with the help of a theoretical model, that the proposed mechanism of voltage-dependent adaptation of gap junctions, is compatible with the known voltage-sensitivity of gap junctions observed in electrophysiological studies. Our analysis suggests a new significance of the voltage-sensitivity of gap junctions and its possible link to the phenomenon of cardiac memory.  相似文献   

19.
Low molecular weight GTP-binding proteins and their cellular interactions were examined in cardiac muscle. Heart homogenate was separated into various subcellular fractions by differential and sucrose density gradient centrifugation. Various fractions were separated by sodium dodecyl sulfate-gel electrophoresis, blotted to nitrocellulose, and GTP-binding proteins detected by incubating with [alpha-32]GTP. Three polypeptides of M(r) 23,000, 26,000, and 29,000 were specifically labeled with [alpha-32P]GTP in all the fractions examined and enriched in sarcolemmal membranes. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 26- and 29-kDa polypeptides. A polypeptide of M(r) 40,000 was weakly labeled with [alpha-32P]GTP in the sarcolemmal membrane and tentatively identified as Gi alpha by immunostaining with anti-Gi alpha antibodies. Cytosolic GTP-binding proteins were labeled with [alpha-32P]GTP and their potential sites of interaction investigated using the blot overlay approach. A polypeptide of 32 kDa present in sarcolemmal membranes, intercalated discs, and enriched in heart gap junctions was identified as a major site of interaction. The low molecular weight GTP-binding proteins associated with the 32-kDa polypeptide through a complex involving cytosolic components of M(r) 56,000, 36,000, 26,000, 23,000, and 12,000. A monoclonal antibody against connexin 32 from liver strongly recognized the 32-kDa polypeptide in heart gap junctions, whereas polyclonal antibodies only weakly reacted with this polypeptide. The low molecular weight GTP-binding proteins associated with a 32-kDa polypeptide in liver membranes that was also immunologically related to connexin 32. These results indicate the presence of a subset of low molecular weight GTP-binding proteins in a membrane-associated and a cytoplasmic pool in cardiac muscle. Their association with a 32-kDa component that is related to the connexins suggests that these polypeptides may be uniquely situated to modulate communication at the cell membrane.  相似文献   

20.
H B Peng  L P Baker  Q Chen 《Neuron》1991,6(2):237-246
The role of basic fibroblast growth factor (bFGF) in signaling the development of the neuromuscular junction was examined. Beads coated with bFGF induced the formation of acetylcholine receptor (AChR) clusters in cultured Xenopus myotomal muscle cells. Tyrphostin, a tyrosine kinase inhibitor, abolished AChR clustering induced by bFGF beads, suggesting a role of tyrosine kinase activation in AChR clustering. Using specific antibodies, we demonstrated the presence of both bFGF and its receptor in the myotomal muscle in vivo during the period of neuromuscular connection. However, similar tissue from older animals with mature neuromuscular junctions showed an apparently truncated form of the bFGF receptor. These data suggest that bFGF may play a role in signaling synaptogenesis in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号