首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we compared the neuronal induction of the antioxidant heme oxygenase-1 (HO-1) in Alzheimer's disease with abnormalities in tau marked by antibodies recognizing either phosphorylation (AT8) or conformational change (Alz50). The epitope recognized by Alz50 shows a complete overlap with HO-1-containing neurons, but AT8 recognized these neurons as well as neurons not displaying HO-1. These findings suggest that tau phosphorylation precedes the HO-1 response and that HO-1 is coincident with the Alz50 epitope. This led us to consider whether oxidative damage plays a role in forming the Alz50 epitope. We found that 4-hydroxy-2-nonenal (HNE), a highly reactive product of lipid peroxidation, reacts with normal tau and induces the Alz50 epitope in tau. It is important that the ability of HNE to create the Alz50 epitope not only is dependent on lysine residues of tau but also requires tau phosphorylation because neither methylated, recombinant, nor dephosphorylated tau reacts with HNE to create the Alz50 epitope. Supporting the in vivo relevance of this observation, endogenous paired helical filament-tau isolated from subjects with Alzheimer's disease was immunoreactive with an antibody to a stable HNE-lysine adduct, as were all vulnerable neurons in subjects with Alzheimer's disease but not in control individuals. Together, these findings support the involvement of oxidative damage early in neurofibrillary tangle formation in Alzheimer's disease and also suggest that HNE modification contributes to the generation of the tau conformation defining the Alz50 epitope. These findings provide evidence that an interplay between phosphorylation of tau and neuronal oxidative stress-induced pathology is important in the formation of neurofibrillary tangles.  相似文献   

2.
Abstract: Hyperphosphorylated tau (PHF-tau) is the major constituent of paired helical filaments (PHFs) from Alzheimer's disease (AD) brains. This conclusion has been based largely on the creation and characterization of monoclonal antibodies raised against PHFs, which can be classified in three categories: (a) those recognizing unmodified primary sequences of tau, (b) those recognizing phosphorylation-dependent epitopes on tau, and (c) those recognizing conformation-dependent epitopes on tau. Recent studies have suggested that the antibodies recognizing primary sequence and phosphorylation-dependent epitopes on tau are unable to distinguish between normal adult biopsy tau and PHF-tau. We now present evidence for a new fourth class of monoclonal antibodies recognizing conformation-dependent phosphoepitopes on tau, typified by TG-3, a monoclonal antibody raised to PHFs from AD brain homogenates. Studies using a series of deletional tau mutants, site-directed tau mutants, and synthetic peptides enable the precise epitope mapping of TG-3. Additional studies demonstrate that TG-3 reacts with neonatal mouse tau and PHF-tau but does not recognize adult mouse tau or tau derived from normal human autopsy or biopsy tissue. Further investigation reveals that TG-3 recognizes a unique conformation of tau found almost exclusively in PHFs from AD brains.  相似文献   

3.
Hyperphosphorylated tau is a major component of neurofibrillary tangles, one of the hallmarks of Alzheimer's disease. CDK5 is a kinase that phosphorylates the tau protein, and its endogenous activator, p35, regulates its activity. Recently, calpain was found to digest p35 to its truncated product, p25. Several lines of evidence suggest that p25-CDK5 has much more powerful kinase activity and that it may cause abnormal hyperphosphorylation of tau. In this study, we have examined the kinetic characteristics of in vitro phosphorylation of the longest isoform of human tau by CDK5 and its activators using recombinant proteins. Although the kinase activity of CDK5 in phosphorylating tau was significantly higher in the presence of p25, the affinity of CDK5 for tau was not different. Phosphopeptide mapping revealed enhanced phosphorylation of Ser(202)/Thr(205) residues by p25-CDK5 (amino acid residues of tau are numbered according to the longest isoform of human tau). These results suggest that cleavage of p35 to p25 greatly enhances the kinase activity of CDK5 and increases the phosphorylation of Ser(202)/Thr(205). Considering the fact that phosphorylation of Ser(202)/Thr(205) antagonizes the tau-mediated nucleation of tubulin, p25-CDK5 may play a pivotal role in neuronal cell death in Alzheimer's disease.  相似文献   

4.
Neurofibrillary tangles (NFT) of hyperphosphorylated tau protein are a major pathological hallmark of Alzheimer's disease (AD). One of the tau phosphorylating kinases with pathological relevance in AD has been suggested to be the cyclin-dependent kinase 5 (Cdk5). The proposed mechanism leading to pathological Cdk5 activity is through induced cleavage of p35 to a proteolytic product, p25. To further study activation of Cdk5 and its role in tau phosphorylation in vitro, we used differentiated SH-SY5Y cells treated with neurotoxic stimuli or transfected with p25. We show that glutamate increased tau phosphorylation, concomitant with an increased Cdk5 activity achieved by upregulation of Cdk5 and p35 protein levels. Treatment with the calcium ionophore A23187 generated the calpain cleaved p25 fragment but only in toxic conditions that caused dephosphorylation and loss of tau. When p25 was transfected to the cells, increased tau phosphorylation was achieved. However, application of the Cdk5 inhibitor Roscovitine did not result in inhibition of tau phosphorylation possibly due to activation of extracellular regulated kinase 1/2 (Erk1/2), which also is capable of phosphorylating tau. Cdk5 and Erk1/2 kinases share some common substrates but impact of their cross talk on tau phosphorylation has not previously been demonstrated. We also show that p25 is degraded via the proteasome in Roscovitine treated cells.  相似文献   

5.
In Alzheimer's disease (AD) and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A) activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of neurofibrillary pathology.  相似文献   

6.
The paired helical filaments of highly phosphorylated tau protein are the main components of neurofibrillary tangles (NFT) in Alzheimer's disease (AD). Protein kinases including glycogen synthase kinase 3 beta (GSK3beta), cyclin-dependent kinase 5 (Cdk5), and c-Jun N-terminal kinase (JNK) have been implicated in NFT formation making the use of selective kinase inhibitors an attractive treatment possibility in AD. When sequentially treated with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF), the human neuroblastoma SH-SY5Y differentiates to neuron-like cells. We found that coincident with morphologically evident neurite outgrowth, both the content and phosphorylation state of tau increased in RA-BDNF differentiated SH-SY5Y cells. Tau phosphorylation increased at all the examined sites ser-199, ser-202, thr-205, ser-396, and ser-404, all of which are hyperphosphorylated in AD brain. We also investigated whether GSK3beta, Cdk5 or JNK was involved in tau phosphorylation in the differentiated SH-SY5Y cells. We found that GSK3beta contributed most and that Cdk5 made a minor contribution. JNK was not involved in tau phosphorylation in this system. The GSK3beta-inhibitor, lithium, inhibited tau phosphorylation in a concentration-dependent manner and with good reproducibility, which enables ranking of substances in this cell model. RA-BDNF differentiated SH-SY5Y cells could serve as a suitable model for studying the mechanisms of tau phosphorylation and for screening potential GSK3beta inhibitors.  相似文献   

7.
Microtubule-associated protein tau in a hyperphosphorylated state is the major component of the filamentous lesions that define a number of neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, argyrophilic grain disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Previous work has established that the phosphorylation-dependent anti-tau antibody AT100 is a specific marker for filamentous tau in adult human brain. Here we have identified protein kinases that generate the AT100 epitope in vitro and have used them, in conjunction with site-directed mutagenesis of tau, to map the epitope. We show that the sequential phosphorylation of recombinant tau by cAMP-dependent protein kinase (PKA) and the stress-activated protein kinases SAPK4/p38delta or JNK2 generated the AT100 epitope and that this required phosphorylation of T212, S214 and T217. Tau protein from newborn, but not adult, mouse brain was weakly labelled by AT100. Phosphorylation by PKA and SAPK4/p38delta abolished the ability of tau to promote microtubule assembly, but failed to influence significantly the heparin-induced assembly of tau into filaments.  相似文献   

8.
In Alzheimer's and other neurodegenerative diseases, hyperphosphorylated tau accumulates in affected neuronal and glial cells in the form of paired helical filaments (PHFs). This tau binds antibody AT100, which recognizes the double phosphorylation site (Thr212/Ser214) that is not present in normal biopsy tau. In primary cultures, highly enriched (>98%) in astrocytes of human fetal brain, three polypeptides of 52, 64, and 70 kD showed immunoreactivity with tau antibodies against non-phosphorylated epitopes, accounting for 88, 12, and <1%, respectively, of the total reactivity. All three polypeptides were phosphorylated at the PHF-1 epitope but not at the epitopes Tau-1, 12E8, AT8, and AT100. Treatment of cultures with okadaic acid resulted in apoptosis characterized by the blebbing of the plasma membrane, condensation of nuclear chromatin, and fragmentation of the nucleus. This treatment also resulted in a 3- to 5-fold increase in the content of both tau protein and phosphorylation. The increases were observed in all phosphorylation sites examined, and included the AT100 site. The AT100 site has been proposed to be generated by protein kinase B/Akt and Cdc2. Since okadaic acid can induce an AD-like hyperphosphorylated state of normal tau in primary cultures of human brain cells, a simple cellular model is available permitting study of self-aggregation of tau and phosphorylation events characteristic of neurodegeneration.  相似文献   

9.
Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer's disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser(202)/Thr(205)), PHF-1 (Ser(396)/Ser(404)) and AT180 (Thr(231)) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro.  相似文献   

10.
Aggregated and highly phosphorylated tau protein is a pathological hallmark of Alzheimer's disease (AD) and other tauopathies. We identified motifs of alternating polar and apolar amino acids within the microtubule-binding repeats of tau which were interrupted by small breaking stretches. Minimal mutation of these breaking sequences yielded a unique instantly aggregating tau mutant containing longer stretches of polar/apolar amino acids without losing its microtubule-binding capacity. These modifications produced rapid aggregation and cytotoxicity with accompanying occurrence of pathologic tau phosphoepitopes (AT8, AT180, AT270, AT100, Ser(422), and PHF-1) and conformational epitopes (MC-1 and Alz50) in cells. Similar to pathological tau in the pretangle state, toxicity appeared to occur early without the requirement for extensive fibril formation. Thus, our mutant protein provides a novel platform for the investigation of the molecular mechanisms for toxicity and cellular behavior of pathologically aggregated tau proteins and the identification of its interaction partners.  相似文献   

11.
Post-mortem diagnosis of Alzheimer's disease relies on high numbers of senile plaques and neurofibrillary tangles (NFTs) stained in distinct brain areas. NFTs mostly consist of hyperphosphorylated versions of the microtubule attached tau protein (PHF-tau) with more than 30 serine and threonine phosphorylation sites identified so far. Characterization of hyperphosphorylated tau regions and the hope to develop robust assays for early AD diagnosis relies mostly on phosphorylation-dependent monoclonal antibodies (mAbs) recognizing only disease-specific phosphorylation patterns. Here, we report that anti-PHF-tau mAb AT8 recognizes an epitope doubly phosphorylated at serine 202 and threonine 205, which was not influenced by a third phosphate group at serine 199. But mAb AT8 was cross-reactive to two doubly phosphorylated motifs containing either serines 199 and 202 or serines 205 and 208 of the human tau sequence. The epitope of anti-tau mAb Tau5 was mapped to the human tau sequence 218-225, which is not phosphorylated in vivo.  相似文献   

12.
Cyclin-dependent kinase 5 (cdk5) is believed to be involved in the phosphorylation of tau protein. We studied the expression of the protein levels of cdk5 and the neuron-specific cdk5 activator p35 as well as cdk5 activity and tau phosphorylation during apoptosis in rat hippocampal neuronal cultures. We observed that in cells treated with etoposide, cyclosporin A, 4-hydroxynonenal (HNE), or okadaic acid, there was an early reduction in the protein levels of p35, and later also in cdk5 with all treatments except etoposide. The level of p25, a calpain cleavage product of p35 suggested to have increased ability to activate cdk5, was reduced paralleling the amount of p35. The changes in the p35 and p25 protein levels coincided with decreases in cdk5 activity and tau phosphorylation after treatment with HNE and etoposide. However, the relationship between the p35 and p25 levels and cdk5 activity was complex. We conclude that neuronal apoptosis is accompanied with a decrease in the levels of p35, p25, and cdk5, and tau phosphorylation. These changes may reinforce the neuronal damage.  相似文献   

13.
Abstract: Paired helical filaments (PHFs) are the major components of neurofibrillary lesions present in Alzheimer's disease (AD). PHFs are composed of the microtubule-associated protein (MAP) τ, which is abnormally phosphorylated in AD. Normal fetal τ is also phosphorylated and shares certain phosphoepitopes with PHF-τ. The abnormal phosphorylation of PHF-τ is considered to be involved in the formation of PHFs and subsequent degeneration of AD neurons. We have previously shown that other neuronal MAPs, such as MAP1B, contain mitosis-specific phosphoepitopes. In addition to mitotic cells, these epitopes are also expressed in fetal brain and PC12 cells during differentiation and neurite outgrowth. One hypothesis regarding the etiology of AD involves the reactivation of a fetal-like state and mitotic conditions in selected neurons. To determine if similar mitosis-associated phosphoepitopes appeared in AD, sections of hippocampal tissue were stained for immunoreactivity with antibodies recognizing both τ and mitotic phosphoepitopes. Both the MPM2 mitotic phosphoepitope antibody and the AT8 PHF-τ antibody stained neurofibrillary lesions and colocalized to pyramidal neurons in AD samples. In addition, PHFs isolated from an AD brain reacted with both antibodies. The MPM2 antibody specifically reacted with τ in the isolated PHF fraction but not normal adult τ. In addition, MPM2 failed to react with normal fetal or adult τ obtained from rat brains. The MPM2 antibody also recognized human MAP1B; however, MAP1B was not present in the PHF fraction. Our results indicate that MPM2 recognized a phosphoepitope present on PHF-τ. Because normal fetal or adult rat brain τ did not express the MPM2 epitope, it is likely that this phosphoepitope is specific for the disease state.  相似文献   

14.
Cyclin-dependent kinase-5 (Cdk5) is a serine/threonine kinase activated by its neuron-specific activator, p35, or its truncated form, p25. It has been proposed that the deregulation of Cdk5 activity by association with p25 in human brain tissue disrupts the neuronal cytoskeleton and may be involved in neurodegenerative diseases such as Alzheimer's disease. In this study, we demonstrate that a short peptide (amino acid residues 154-279; Cdk5 inhibitory peptide; CIP), derived from p35, specifically inhibits Cdk5 activity in vitro and in HEK293 cells cotransfected with the peptide and Cdk5/p25, but had no effect on endogenous cdc2 kinase activity. Moreover, we demonstrate that the phosphorylation of tau in HEK293 cells, cotransfected with Cdk5/p25 and CIP, is effectively reduced. These results suggest that CIP specifically inhibits both Cdk5/p25 complex activity and the tau hyperphosphorylation induced by Cdk5/p25. The elucidation of the molecular basis of p25 activation and CIP inhibition of Cdk5 activity may provide insight into mechanisms underlying the pathology of Alzheimer's disease and contribute to therapeutic strategies.  相似文献   

15.
Alterations in the status of microtubules contribute to the cytoskeletal rearrangements that occur during apoptosis. The microtubule-associated protein tau regulates microtubule dynamics and thus is likely to play an important role in the cytoskeletal changes that occur in apoptotic cells. Previously, we demonstrated that the phosphorylation of tau at the Tau-1 epitope was increased during neuronal PC12 cell apoptosis, and further that the microtubule binding of tau from apoptotic cells was significantly impaired because of altered phosphorylation. The fact that the microtubule-binding capacity of tau from apoptotic cells was reduced to approximately 30% of control values indicated that sites in addition to those within the Tau-1 epitope were hyperphosphorylated during apoptosis. In this study using a combination of immunological and biochemical approaches, numerous sites were found to be hyperphosphorylated on tau isolated from apoptotic cells. Further, during apoptosis, the activities of cell division control protein kinase (cdc2) and cyclin-dependent kinase 5 (cdk5) were selectively and significantly increased. The association of these two protein kinases with tau was also increased during apoptosis. These findings are intriguing because many of the sites found to be hyperphosphorylated on tau during apoptosis are also hyperphosphorylated on tau from Alzheimer's disease brain. Likewise, there are data indicating that in Alzheimer's disease the activities of cdc2 and cdk5 are also increased.  相似文献   

16.
Evidence continues to accrue in support of the notion that normal adult human tau is converted into the protein subunits of Alzheimer's disease paired helical filaments as a result of the abnormal phosphorylation of tau at aberrant sites. Although the biological consequences of the generation of these abnormal tau derivatives in neurons remain uncertain, it is plausible that this process could destabilize microtubules and have a deleterious effect on the function and survival of neurons. Recent studies that probe the mechanisms whereby normal tau, a component of the neuronal cytoskeleton, undergoes profound alterations to become paired helical filaments in the Alzheimer's diseased brain are discussed.  相似文献   

17.
Paullones constitute a new family of benzazepinones with promising antitumoral properties. They were recently described as potent, ATP-competitive, inhibitors of the cell cycle regulating cyclin-dependent kinases (CDKs). We here report that paullones also act as very potent inhibitors of glycogen synthase kinase-3beta (GSK-3beta) (IC50: 4-80 nM) and the neuronal CDK5/p25 (IC50: 20-200 nM). These two enzymes are responsible for most of the hyperphosphorylation of the microtubule-binding protein tau, a feature observed in the brains of patients with Alzheimer's disease and other neurodegenerative 'taupathies'. Alsterpaullone, the most active paullone, was demonstrated to act by competing with ATP for binding to GSK-3beta. Alsterpaullone inhibits the phosphorylation of tau in vivo at sites which are typically phosphorylated by GSK-3beta in Alzheimer's disease. Alsterpaullone also inhibits the CDK5/p25-dependent phosphorylation of DARPP-32 in mouse striatum slices in vitro. This dual specificity of paullones may turn these compounds into very useful tools for the study and possibly treatment of neurodegenerative and proliferative disorders.  相似文献   

18.
The most characteristic cellular change in Alzheimer's disease is the accumulation of aberrant filaments, the paired helical filaments (PHF), in the affected neurons. There is growing evidence from a number of laboratories that dementia correlates better with the accumulation of PHF than of the extracellular amyloid, the second major lesion of Alzheimer's disease. PHF are both morphologically and biochemically unlike any of the normal neurofibrils. The major polypeptides in isolated PHF are microtubule-associated protein tau. Tau in PHF is phosphorylated differently from tau in microtubules. This abnormal phosphorylation of tau in PHF occurs at several sites. The accumulation of abnormally phosphorylated tau in the affected neurons in Alzheimer's disease brain precedes both the formation and the ubiquitination of the neurofibrillary tangles. In Alzheimer's disease brain, tubulin is assembly competent, but the in vitro assembly of microtubules is not observed. In vitro, the phosphate groups in PHF are less accessible than those of tau to alkaline phosphatase. The in vitro dephosphorylated PHF polypeptides stimulate microtubule assembly from bovine tubulin. It is hypothesized that a defect in the protein phosphorylation/dephosphorylation system is one of the earliest events in the cytoskeletal pathology in Alzheimer's disease. Production of nonfunctional tau by its phosphorylation and its polymerization into PHF most probably contributes to a microtubule assembly defect, and consequently, to a compromise in both axoplasmic flow and neuronal function. Index Entries: Alzheimer's disease; mechanisms of neuronal degeneration; neurofibrillary changes; paired helical filaments: biochemistry; microtubule-associated protein tau; abnormal phosphorylation; ubiquitination; microtubule assembly; axoplasmic flow; protein phosphorylation/dephosphorylation.  相似文献   

19.

Background

Neurofibrillary tangles (NFTs) are intraneuronal aggregates associated with several neurodegenerative diseases including Alzheimer's disease. These abnormal accumulations are primarily comprised of fibrils of the microtubule-associated protein tau. During the progression of NFT formation, disperse and non-interacting tau fibrils become stable aggregates of tightly packed and intertwined filaments. Although the molecular mechanisms responsible for the conversion of disperse tau filaments into tangles of filaments are not known, it is believed that some of the associated changes in tau observed in Alzheimer's disease, such as phosphorylation, truncation, ubiquitination, glycosylation or nitration, may play a role.

Results

We have investigated the effects of tau phosphorylation by glycogen synthase kinase-3β (GSK-3β) on tau filaments in an in vitro model system. We have found that phosphorylation by GSK-3β is sufficient to cause tau filaments to coalesce into tangle-like aggregates similar to those isolated from Alzheimer's disease brain.

Conclusion

These results suggest that phosphorylation of tau by GSK-3β promotes formation of tangle-like filament morphology. The in vitro cell-free experiments described here provide a new model system to study mechanisms of NFT development. Although the severity of dementia has been found to correlate with the presence of NFTs, there is some question as to the identity of the neurotoxic agents involved. This model system will be beneficial in identifying intermediates or side reaction products that might be neurotoxic.  相似文献   

20.
The aim of the present study was to investigate the relation between neurogenesis, cell cycle reactivation and neuronal death during tau pathology in a novel tau transgenic mouse line THY-Tau22 with two frontotemporal dementia with parkinsonism linked to chromosome-17 mutations in a human tau isoform. This mouse displays all Alzheimer disease features of neurodegeneration and a broad timely resolution of tau pathology with hyperphosphorylation of tau at younger age (up to 6 months) and abnormal tau phosphorylation and tau aggregation in aged mice (by 10 months). Here, we present a follow-up of cell cycle markers with aging in control and transgenic mice from different ages. We show that there is an increased neurogenesis during tau hyperphosphorylation and cell cycle events during abnormal tau phosphorylation and tau aggregation preceding neuronal death and neurodegeneration. However, besides phosphorylation, other mechanisms including tau mutations and changes in tau expression and/or splicing may be also involved in these mechanisms of cell cycle reactivation. Altogether, these data suggest that cell cycle events in THY-Tau22 are resulting from neurogenesis in young animals and cell death in older ones. It suggests that neuronal cell death in such models is much more complex than believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号