首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
An investigation of repression in the trp system of Escherichia coli was undertaken using operon fusions and plasmids constructed via recombinant DNA technology. The promoters of the trp operon and the trpR gene were fused to lacZ, enabling the activity of these promoters to be evaluated under various conditions through measurements of beta-galactosidase production. In confirmation of earlier studies, the trpR gene was shown to be regulated autogenously. This control feature of the trp system was found to maintain intracellular Trp repressor protein at essentially invariant levels under most conditions studied. Increasing the trpR+ gene dosage did not significantly elevate Trp repressor protein levels, nor did the introduction of additional operator "sinks" result in significantly decreased levels of Trp repressor protein. Definite alterations in intracellular Trp repressor protein levels were achieved only by subverting the normal trpR regulatory elements. The placement of the lacUV5 or the lambda PL promoters upstream of the trpR gene resulted in significant increases in repression of the trp system. Substituting the primary trp promoter/operator for the native trpR promoter/operator resulted in an altered regulatory response of the trp system to tryptophan limitation or excess. The regulation of the trpR gene effectively imparts a broad range of expression to the trp operon in a manner finely attuned to fluctuations in intracellular tryptophan levels.  相似文献   

2.
The interaction of Trp repressor protein with partial trp operators was studied in vitro and in vivo. At high ratios of protein to DNA, Trp holorepressor formed stable complexes with DNA molecules containing half operators. When plasmids conferring the capacity to hyperproduce Trp repressor were present in trpOc strains of Escherichia coli, repression of downstream tryptophan synthase occurred. Palindromicity of the trp operator may facilitate stable interaction with Trp repressor, but this attribute need not be regarded as a critically essential structural feature. Sufficient information for the recognition by Trp repressor protein of an appropriate target resides within a DNA sequence of approximately ten base-pairs.  相似文献   

3.
4.
5.
6.
We have used an alkaline phosphatase protection assay to investigate the interaction of the trp repressor with its operator sequence. The assay is based on the principle that the trp repressor will protect a terminally 5'-32P-labeled operator DNA fragment from attack by alkaline phosphatase. The optimal oligonucleotide for investigating the trp repressor/operator interaction extends two base pairs from each end of the genetically defined target sequence predicted by in vivo studies [Bass et al. (1987) Genes Dev. 1, 565-572]. The assay works well over a 10,000-fold range of protein/DNA affinity and is used to show that the corepressor, L-tryptophan, causes the liganded repressor to bind a 20 base pair trp operator duplex 6400 times more strongly than the unliganded aporepressor. The affinity of the trp repressor for operators containing symmetrical mutations was interpreted in terms of the trp repressor/operator crystal structure as follows: (1) Direct hydrogen bonds with the functional groups of G-9 of the trp operator and the side chain of Arg 69 of the trp repressor contribute to DNA-binding specificity. (2) G-6 of the trp operator is critical for DNA-binding specificity probably because of the two water-mediated hydrogen bonds between its functional groups and the N-terminus of the trp repressor's E-helix. (3) Sequence-dependent aspects of the trp operator's conformation help stabilize the trp repressor/operator complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
The 3-dimensional structure of the trp repressor, aporepressor, and repressor/operator complex have been described. The NH2-terminal arms of the protein, comprising approximately 12-14 residues, were not well resolved in any of these structures. Previous studies by Carey showed that the arms are required for full in vitro repressor activity. To examine the roles of the arms more fully we have removed codons 2-5 and 2-8 of the trpR gene and analyzed the resulting truncated repressors in vivo and in vitro. The delta 2-5 trp repressor was found to be approximately 25% as active as the wild type repressor in vivo. In in vitro equilibrium binding experiments, the delta 2-5 trp repressor was shown to be five-fold less active in operator binding. The rate of dissociation of the complex formed between the delta 2-5 trp repressor and operator was essentially the same as the rate of dissociation of the wild type trp repressor/operator complex. However association of the delta 2-5 trp repressor with operator was clearly defective. Since the NH2-terminal arms of the trp repressor appear to affect association predominantly they may play a role in facilitating non-specific association of repressor with DNA as repressor seeks its cognate operators. The delta 2-8 trp repressor was unstable in vivo and in vitro, suggesting that some portion of the NH2-terminal arm is required for proper folding of the remainder of the molecule.  相似文献   

10.
The Escherichia coli Trp repressor binds to promoters of very different sequence and intrinsic activity. Its mode of binding to trp operator DNA has been studied extensively yet remains highly controversial. In order to examine the selectivity of the protein for DNA, we have used electromobility shift assays (EMSAs) to study its binding to synthetic DNA containing the core sequences of each of its five operators and of operator variants. Our results for DNA containing sequences of two of the operators, trpEDCBA and aroH are similar to those of previous studies. Up to three bands of lower mobility than the free DNA are obtained which are assigned to complexes of stoichiometry 1 : 1, 2 : 1 and 3 : 1 Trp repressor dimer to DNA. The mtr and aroL operators have not been studied previously in vitro. For DNA containing these sequences, we observe predominantly one retarded band in EMSA with mobility corresponding to 2 : 1 complexes. We have also obtained retardation of DNA containing the trpR operator sequence, which has only been previously obtained with super-repressor Trp mutants. This gives bands with mobilities corresponding to 1 : 1 and 2 : 1 complexes. In contrast, DNA containing containing a symmetrized trpR operator sequence, trpRs, gives a single retarded band with mobility corresponding solely to a 1 : 1 protein dimer-DNA complex. Using trpR operator variants, we show that a change in a single base pair in the core 20 base pairs can alter the number of retarded DNA bands in EMSA and the length of the DNase I footprint observed. This shows that the binding of the second dimer is sequence selective. We propose that the broad selectivity of Trp repressor coupled to tandem 2 : 1 binding, which we have observed with all five operator sequences, enables the Trp repressor to bind to a limited number of sites with diverse sequences. This allows it to co-ordinately control promoters of different intrinsic strength. This mechanism may be of importance in a number of promoters that bind multiple effector molecules.  相似文献   

11.
How Trp repressor binds to its operator.   总被引:14,自引:4,他引:10       下载免费PDF全文
We propose that the generally accepted model of a single Trp repressor dimer binding to a center of symmetry in the natural trp operator (Otwinowski et al., 1988) is wrong. We show here that the Trp repressor binds to a sequence whose center is located four base pairs either to the right or to the left of the central axis of symmetry that was previously identified. We show that: (i) the oligonucleotide used by Otwinowski et al. is not retarded by the Trp repressor in a mobility shift assay under conditions wherein a shorter oligonucleotide carrying our consensus sequence is retarded, (ii) that methylation protection experiments on the full natural operator sequence and the short oligonucleotide protect similar patterns and (iii) that by varying every base in the shorter oligonucleotide, we can demonstrate an optimal sequence for Trp repressor binding.  相似文献   

12.
Trp repressor of Escherichia coli K-12 is a dimeric protein (monomer size, 108 amino acids) that acquires high affinity for certain operator targets in double-stranded DNA upon interaction with L-tryptophan. High titer antiserum directed against E. coli Trp repressor protein, elicited in rabbits, was monospecific toward native or denatured Trp repressor. Using an enzyme-linked immunosorbent assay to measure antigen-antibody reaction, we found that the binding of L-tryptophan to Trp repressor was associated with a marked decrease in antibody reactivity that presumably accompanied a conformational change in this protein to a state with strong affinity for trp operator-bearing DNA. We analyzed the pattern of cleavage of Trp repressor by chymotrypsin and trypsin and the effect of L-tryptophan on such hydrolytic cleavages. Chymotrypsin cleaved Trp repressor mainly between residues 71 and 72. In the presence of L-tryptophan this cleavage was slowed. The first-order rate constants for chymotryptic digestion of Trp repressor were 7.6 X 10(-2) and 4.6 X 10(-2) min-1 in the absence and presence of L-tryptophan, respectively. Tryptic digestion was more complex. Initial cleavage of Trp repressor occurred with approximately equal facility between residues 69-70 or 84-85. Subsequent tryptic hydrolyses led eventually to a major core fragment containing the first 54 amino acids of Trp repressor plus four other fragments from the carboxyl-terminal half of the protein. In the presence of L-tryptophan, cleavage by trypsin between residues 54-55 and 84-85 was retarded, even when a previous hydrolytic event elsewhere in the protein had occurred. Tryptophan had essentially no effect on the tryptic hydrolysis of peptide bond 97-98, but accelerated cleavage at peptide bond 69-70. The first-order rate constants for the first tryptic cleavage of Trp receptor were 1.55 X 10(-1) and 1.33 X 10(-1) min-1 in the absence and presence of ligand, respectively. Our results are compatible with a structural model wherein certain amino acid side chains and peptide bonds of Trp repressor (specifically, those of residues 69-85) lie on or near the surface of the protein. This region of Trp repressor has been predicted to contain the operator recognition site. The susceptibility to proteolytic attack of at least four peptide bonds in this area changes when the protein interacts with L-tryptophan.  相似文献   

13.
Previous studies with purified variants of the 434 repressor having different operator-binding specificities have demonstrated the interactions of a heterodimeric repressor with a hybrid operator site. The present study investigates the interactions between the 434 repressor and its operator site. The optimum 434 operator half-site is used with a P22 operator half-site to create a hybrid 434/P22 operator. We show that this hybrid operator can be efficiently bound by a heterodimeric repressor, consisting of one wild-type 434 repressor monomer and one 434 repressor monomer with the binding specificity of the P22 repressor, to bring about repression in Escherichia coli.  相似文献   

14.
15.
16.
The extent of DNA bending induced by 434 repressor, its amino terminal DNA binding domain (R1-69), and 434 Cro was studied by gel shift assay. The results show that 434 repressor and R1-69 bend DNA to the same extent. 434 Cro-induced DNA bends are similar to those seen with the 434 repressor proteins. On approximately 265 base pair fragments, the cyclic AMP receptor protein of Escherichia coli (CRP) produces larger mobility shifts than does 434 repressor. This indicates that the 434 proteins bend DNA to a much smaller extent than does CRP. The effects of central operator sequence on intrinsic and 434 protein-induced DNA bending was also examined by gel shift assay. Two 434 operators having different central sequences and affinities for 434 proteins display no static bending. The amount of gel shift induced by 434 repressor on these operators is identical, showing that the 434 repressor bends operators with different central sequences to the same extent. Hence, mutations in the central region of the operator do not influence the bent structure of the unbound or bound operator.  相似文献   

17.
The relative mobility of residues in the trp repressor of Escherichia coli has been examined in the absence and presence of the corepressor L-tryptophan by one- and two-dimensional 1H NMR. A comparison of relative intensities of cross peaks in NOESY and COSY spectra allowed a rigid Tyr and a mobile Tyr residue, three mobile Ser residues and three mobile Lys residues to be detected. The two Tyr residues were assigned by selective nitration with tetranitromethane. The singly nitrated molecule (on Tyr7) binds the trp operator with an affinity close to that of the unmodified repressor. Measurements of the intraring cross-relaxation rate constant as a function of temperature for Tyr7 shows the presence of considerable internal motion on the subnanosecond time scale in the flexible N-terminal arm. The order parameter, S2, characterising the motion is 0.35, which increases to about 0.5 in the presence of Trp. Trp decreases both the amplitude of the motion and the rate of the motion. At least three of the six Ser residues of the trp repressor have greater mobility than expected for a rigid body, and two of the Ser residues are sensitive to the presence of Trp. The more mobile Ser residues are probably those on the N-terminal arm and the C-terminal sequence. These results complement the single-crystal X-ray diffraction studies for which the electron density of the first ten and last three amino acid residues is weak. The solution data are consistent with proposals that the flexible N-terminal arm of the trp repressor makes important contacts with the DNA.  相似文献   

18.
Flexibility of the DNA-binding domains of trp repressor   总被引:9,自引:0,他引:9  
An orthorhombic crystal form of trp repressor (aporepressor plus L-tryptophan ligand) was solved by molecular replacement, refined to 1.65 A resolution, and compared to the structure of the repressor in trigonal crystals. Even though these two crystal forms of repressor were grown under identical conditions, the refined structures have distinctly different conformations of the DNA-binding domains. Unlike the repressor/aporepressor structural transition, the conformational shift is not caused by the binding or loss of the L-tryptophan ligand. We conclude that while L-tryptophan binding is essential for forming a specific complex with trp operator DNA, the corepressor ligand does not lock the repressor into a single conformation that is complementary to the operator. This flexibility may be required by the various binding modes proposed for trp repressor in its search for and adherence to its three different operator sites.  相似文献   

19.
Unexpected features seen by high resolution X-ray crystallography at the interface of the trp repressor and the 'traditional' trp operator provoked the claim that the DNA fragment used in the crystal structure is not the true operator, and therefore that the crystal structure of the trp repressor-operator complex does not portray a specific interaction. An alternative sequence was proposed mainly on the basis of mutational studies and gel retardation analysis of short target duplexes (Staacke et al., 1990a,b). We have reexamined the sequence consensus in trpR-repressible promoters and analyzed the mutagenesis experiments of others including Staacke et al. (1990a) and found them fully consistent with the interactions of the traditional operator sequence seen in the crystal structure, and stereochemically inconsistent with the above referenced alternative model. Moreover, an in vitro trp repressor-DNA binding analysis, employing both novel DNA constructs devised to avoid previously encountered artifacts as well as full-length promoter sequences, indicates that the traditional operator used in the crystal structure is the preferred target of the trp repressor.  相似文献   

20.
Hays LB  Chen YS  Hu JC 《BioTechniques》2000,29(2):288-90, 292, 294 passim
The yeast two-hybrid system has been used to characterize many protein-protein interactions. A two-hybrid system for E. coli was constructed in which one hybrid protein bound to a specific DNA site recruits another to an adjacent DNA binding site. The first hybrid comprises a test protein, the bait, fused to a chimeric protein containing the 434 repressor DNA binding domain. In the second hybrid, a second test protein, the prey, is fused downstream of a chimeric protein with the DNA binding specificity of the lambda repressor. Reporters were designed to express cat and lacZ under the control of a low-affinity lambda operator. At low expression levels, lambda repressor hybrids weakly repress the reporter genes. A high-affinity operator recognized by 434 repressor was placed nearby, in a position that does not yield repression by 434 repressor alone. If the test proteins interact, the 434 hybrid bound to the 434 operator stabilizes the binding of the lambda repressor hybrid to the lambda operator, causing increased repression of the reporter genes. Reconstruction experiments with the fos and jun leucine zippers detected protein-protein interactions between either homodimeric or heterodimeric leucine zippers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号