首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rab11a, Rab11b, and Rab25 in mammals are thought to comprise a subfamily of Rab proteins, although Rab25 has two amino acid differences in its effector domain. We have isolated and characterized the genomic sequences of murine Rab11a and Rab25 and compared them with those of previously characterized mammalian Rab genes. The Rab11a gene spans 29 kb and Rab25 spans 9 kb. The genes have TATA-less promoters, but contain GC-rich areas in their upstream 5' regions. Both genes have 5 exons, with the introns containing characteristic repeats. Rab11a has an unusually long 8. 5-kb fourth intron. The Rab11a and Rab25 genes are localized to chromosomes 9C and 3E3/F1, respectively. The overall organization of the Rab11a, Rab11b, and Rab25 genes is similar, with homologous exon-intron boundaries, and differs markedly from those of Rab3A and Rab1A. These results confirm that Rab11A, Rab11b, and Rab25 represent a closely related gene family.  相似文献   

2.
Rab proteins comprise a family of GTPases, conserved from yeast to mammals, which are integral components of membrane trafficking pathways. Rab3A is a neural/neuroendocrine-specific member of the Rab family involved in Ca(2+) -regulated exocytosis, where it functions in an inhibitory capacity controlling recruitment of secretory vesicles into a releasable pool at the plasma membrane. The effector by which Rab3A exerts its inhibitory effect is unclear as the Rab3A effectors Rabphilin and RIM have been excluded from for this role. One putative Rab3A effector in dense-core granule exocytosis is the cytosolic zinc finger protein, Noc2. We have established that overexpression of Noc2 in PC12 cells has a direct inhibitory effect upon Ca(2+)-triggered exocytosis in permeabilized cells. We demonstrate specific nucleotide-dependent binding of Noc2 to Rab3A and show that the inhibition of exocytosis is dependent upon this interaction since Rab3A binding-deficient mutants of Noc2 do not inhibit exocytosis. We propose that Noc2 may be a negative effector for Rab3A in regulated exocytosis of dense-core granules from endocrine cells.  相似文献   

3.
The retromer is an endosome-localized complex involved in protein trafficking. To better understand its function and regulation in plants, we recently investigated how Arabidopsis retromer subunits assemble and are targeted to endosomal membranes and highlighted original features compared with mammals. We characterized Arabidopsis vps26 null mutant and showed that it displays severe developmental defaults similar to those observed in vps29 mutant. Here, we go further by describing new phenotypic defects associated with loss of VPS26 function, such as inhibition of lateral root initiation. Recently, we showed that VPS35 subunit plays a crucial role in the recruitment of the plant retromer to endosomes, probably through an interaction with the Rab7 homolog RABG3f. In this work, we now show that contrary to mammals, Arabidopsis Rab5 homologs do not seem to be necessary for the recruitment of the core retromer to endosomal membranes, which highlights a new specificity of the plant retromer.  相似文献   

4.
Rab GTPases serve as multifaceted organizers during vesicle trafficking. Rab7, a member of the Rab GTPase family, has been shown to perform various essential functions in endosome trafficking and in endosome-to-lysosome trafficking in mammalian systems. The Arabidopsis thaliana genome encodes eight putative Rab7 homologs; however, the detailed function and activation mechanism of Rab7 in plants remain unknown. Here, we demonstrate that Arabidopsis RABG3f, a member of the plant Rab7 small GTPase family, localizes to prevacuolar compartments (PVCs) and the tonoplast. The proper activation of Rab7 is essential for both PVC-to-vacuole trafficking and vacuole biogenesis. Expression of a dominant-negative Rab7 mutant (RABG3fT22N) induces the formation of enlarged PVCs and affects vacuole morphology in plant cells. We also identify Arabidopsis MON1 (MONENSIN SENSITIVITY1) and CCZ1 (CALCIUM CAFFEINE ZINC SENSITIVITY1) proteins as a dimeric complex that functions as the Rab7 guanine nucleotide exchange factor. The MON1-CCZ1 complex also serves as the Rab5 effector to mediate Rab5-to-Rab7 conversion on PVCs. Loss of functional MON1 causes the formation of enlarged Rab5-positive PVCs that are separated from Rab7-positive endosomes. Similar to the dominant-negative Rab7 mutant, the mon1 mutants show pleiotropic growth defects, fragmented vacuoles, and altered vacuolar trafficking. Thus, Rab7 activation by the MON1-CCZ1 complex is critical for vacuolar trafficking, vacuole biogenesis, and plant growth.  相似文献   

5.
Evolution of the Rab family of small GTP-binding proteins.   总被引:33,自引:0,他引:33  
Rab proteins are small GTP-binding proteins that form the largest family within the Ras superfamily. Rab proteins regulate vesicular trafficking pathways, behaving as membrane-associated molecular switches. Here, we have identified the complete Rab families in the Caenorhabditis elegans (29 members), Drosophila melanogaster (29), Homo sapiens (60) and Arabidopsis thaliana (57), and we defined criteria for annotation of this protein family in each organism. We studied sequence conservation patterns and observed that the RabF motifs and the RabSF regions previously described in mammalian Rabs are conserved across species. This is consistent with conserved recognition mechanisms by general regulators and specific effectors. We used phylogenetic analysis and other approaches to reconstruct the multiplication of the Rab family and observed that this family shows a strict phylogeny of function as opposed to a phylogeny of species. Furthermore, we observed that Rabs co-segregating in phylogenetic trees show a pattern of similar cellular localisation and/or function. Therefore, animal and fungi Rab proteins can be grouped in "Rab functional groups" according to their segregating patterns in phylogenetic trees. These functional groups reflect similarity of sequence, localisation and/or function, and may also represent shared ancestry. Rab functional groups can help the understanding of the functional evolution of the Rab family in particular and vesicular transport in general, and may be used to predict general functions for novel Rab sequences.  相似文献   

6.
T Ueda  N Matsuda  T Anai  H Tsukaya  H Uchimiya    A Nakano 《The Plant cell》1996,8(11):2079-2091
The Arabidopsis Ara proteins belong to the Rab/Ypt family of small GTPases, which are implicated in intracellular vesicular traffic. To understand their specific roles in the cell, it is imperative to identify molecules that regulate the GTPase cycle. Such molecules have been found and characterized in animals and yeasts but not in plants. Using a yeast system, we developed a novel method of functional screening to detect interactions between foreign genes and identified this Rab regulator in plants. We found that the expression of the ARA4 gene in yeast ypt mutants causes exaggeration of the mutant phenotype. By introducing an Arabidopsis cDNA library into the ypt1 mutant, we isolated a clone whose coexpression overcame the deleterious effect of ARA4. This gene encodes an Arabidopsis homolog of the Rab GDP dissociation inhibitor (GDI) and was named AtGDI1. The expression of AtGDI1 complemented the yeast sec19-1 (gdi1) mutation. AtGDI1 is expressed almost ubiquitously in Arabidopsis tissues. The method described here indicates the physiological interaction of two plant molecules, Ara4 and GDI, in yeast and should be applicable to other foreign genes.  相似文献   

7.
In yeast and mammals, the Yip/PRA1 family of proteins has been reported to facilitate the delivery of Rab GTPases to the membrane by dissociating the Rab–GDI complex during vesicle trafficking. Recently, we identified OsPRA1, a plant Yip/PRA1 homolog, as an OsRab7-interacting protein that localizes to the prevacuolar compartment, which suggests that it plays a role in vacuolar trafficking of plant cells. Here, we show that OsPRA1 is essential for vacuolar trafficking and that it has molecular properties that are typical of the Yip/PRA1 family of proteins. A trafficking assay using Arabidopsis protoplasts showed that the point mutant OsPRA1(Y94A) strongly inhibits the vacuolar trafficking of cargo proteins, but has no inhibitory effect on the plasma membrane trafficking of H+-ATPase-GFP, suggesting its specific involvement in vacuolar trafficking. Moreover, OsPRA1 was shown to be an integral membrane protein, suggesting that its two hydrophobic domains may mediate membrane integration, and its cytoplasmic N- and C-terminal regions were found to be important for binding to OsRab7. OsPRA1 also interacted with OsVamp3, implying its involvement in vesicle fusion. Finally, we used a yeast expression system to show that OsPRA1 opposes OsGDI2 activity and facilitates the delivery of OsRab7 to the target membrane. Taken together, our results support strongly that OsPRA1 targets OsRab7 to the tonoplast during vacuolar trafficking.  相似文献   

8.
The PRA1 gene family in Arabidopsis   总被引:1,自引:0,他引:1  
Prenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins. The Arabidopsis (Arabidopsis thaliana) PRA1 (AtPRA1) proteins were found to homodimerize and heterodimerize in a manner corresponding to their phylogenetic distribution. Different AtPRA1 family members displayed distinct expression patterns, with a preference for vascular cells and expanding or developing tissues. AtPRA1 genes were significantly coexpressed with Rab GTPases and genes encoding vesicle transport proteins, suggesting an involvement in the vesicle trafficking process similar to that of their animal counterparts. Correspondingly, AtPRA1 proteins were localized in the endoplasmic reticulum, Golgi apparatus, and endosomes/prevacuolar compartments, hinting at a function in both secretory and endocytic intracellular trafficking pathways. Taken together, our data reveal a high functional diversity of AtPRA1 proteins, probably dealing with the various demands of the complex trafficking system.  相似文献   

9.
The Rab family belongs to the Ras‐like small GTPase superfamily and is implicated in membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs are yet to be identified. In this study, we systematically screened five different cell or tissue lysates for novel Rab effectors by a combination of glutathione S‐transferase (GST) pull‐down assay with 60 different mammalian Rabs and mass spectroscopic analysis. Three of the 21 Rab‐binding proteins we identified, mKIAA1055/TBC1D2B (Rab22‐binding protein), GAPCenA/TBC1D11 (Rab36‐binding protein) and centaurin β2/ACAP2 (Rab35‐binding protein), are GTPase‐activating proteins (GAPs) for Rab or Arf. Although it has recently been proposed that the Rab–GAP (Tre‐2 /Bub2/Cdc16) domain physically interacts with its substrate Rab, these three GAPs interacted with specific Rabs via a domain other than a GAP domain, e.g. centaurin β2 binds GTP‐Rab35 via the ankyrin repeat (ANKR) domain. Although centaurin β2 did not exhibit any Rab35–GAP activity in vitro, the Rab35‐binding ANKR domain of centaurin β2 was found to be required for its plasma membrane localization and regulation of Rab35‐dependent neurite outgrowth of PC12 cells through inactivation of Arf6. These findings suggest a novel mode of interaction between Rab and GAP.  相似文献   

10.
Ara6 of Arabidopsis thaliana is a novel member of the Rab/Ypt GTPase family with unique structural features. It resembles Rab5 GTPases best, but lacks a large part of the C-terminal hypervariable region and the cysteine motif, and instead harbors an extra stretch of amino acid residues containing myristoylation and palmitoylation sites at the N-terminus. Ara6 is tightly associated with membranes and is expressed constitutively. In contrast, the conventional Rab5 ortholog, Ara7, is highly expressed only in actively dividing cells. Examination of green fluorescent protein (GFP)-tagged proteins indicates that both Ara6 and Ara7 are distributed on a subpopulation of endosomes and suggests their roles in endosomal fusion. The endosomal localization of Ara6 requires N-terminal fatty acylation, nucleotide binding and the C-terminal amino acid sequence coordinately. Proteins similar to Ara6 are found only in higher plants and thus represent a novel class of Rab GTPases regulating endocytic function in a plant- specific manner.  相似文献   

11.
Giantin interacts with both the small GTPase Rab6 and Rab1   总被引:1,自引:0,他引:1  
The interaction of small GTPases of the Rab family and coiled coil proteins of the golgin family has been reported for example for the Rab1 GTPase and p115, GM130 and Giantin. We now show that Rab6A, a GTPase that controls retrograde trafficking within the Golgi back to the endoplasmic reticulum is also able to bind to Giantin in vivo and in vitro pointing to an interesting complex formation between Giantin and two different Rab GTPases. In Saccharomyces cerevisiae a genetic interaction between Ypt1 and Ypt6 has already been demonstrated, but in this paper we were able to describe that the mammalian Rab GTPases are able to interact on the same golgin protein, Giantin.  相似文献   

12.
Small GTP-binding proteins belonging to the Ras superfamily have been found in evolutionarily divergent organisms. Here, we report the isolation and analysis of a cDNA encoding a putative small GTP-binding protein, designated Rhn1, from the plant, Nicotiana plumbaginifolia. The 21.8-kDa protein has 60% amino acid similarity with the mammalian Rab5 proteins. The Rhn1 protein is encoded by a small multigene family. Northern analysis shows the highest steady-state mRNA levels to be in roots and flowers. Furthermore, the Rhn1 protein has 80% amino acid similarity with an Arabidopsis small GTP-binding protein, designated Rha1.  相似文献   

13.
The Rab class of low molecular weight GTPases has been implicated in the regulation of vesicular trafficking between membrane compartments in eukaryotic cells. The Rab3 family consisting of four highly homologous isoforms is associated with secretory granules and synaptic vesicles. Many different types of experiments indicate that Rab3a is a negative regulator of exocytosis and that its GTP-bound form interacts with Rabphilin3, a possible effector. Overexpression of Rabphilin3 in chromaffin cells enhances secretion. We have investigated the expression, localization, and effects on secretion of the various members of the Rab3 family in bovine chromaffin and PC12 cells. We found that Rab3a, Rab3b, Rab3c, and Rab3d are expressed to varying degrees in PC12 cells and in a fraction enriched in chromaffin granule membranes from the adrenal medulla. Immunocytochemistry revealed that all members of the family when overexpressed in PC12 cells localize to secretory granules. Binding constants for the interaction of the GTP-bound forms of Rab3a, Rab3b, Rab3c, and Rab3d with Rabphilin3 were comparable (Kd = 10-20 nM). Overexpression of each of the four members of the Rab3 family inhibited secretion. Mutations in Rab3a were identified that strongly impaired the ability of the GTP-bound form to interact with Rabphilin3. The mutated proteins inhibited secretion similarly to wild type Rab3a. Although Rab3a and Rabphilin3 are located on the same secretory granule or secretory vesicle and interact both in vitro and in situ, it is concluded that the inhibition of secretion by overexpression of Rab3a is unrelated to its ability to interact with Rabphilin3.  相似文献   

14.
The Rab family of GTPases are regulators of eukaryotic vesicular membrane traffic, while modulation of actin dynamics is a function conventionally associated with the Rho family of GTPases. Rab35 is a Rab protein with both plasma membrane and endosomal localization, and has been implicated in diverse processes that include T-cell receptor recycling, oocyte yolk protein recycling and cytokinesis. Rab35 regulates neurite outgrowth in neuronal-like cells, and can induce protrusions even in typically non-adherent Jurkat T-cells. Recent evidence indicates that Rab35’s activity, particularly the ability to mediate protrusive outgrowths, is due to its direct influence on actin dynamics. This can occur via activation of the Rho family of GTPases, or through the engagement of its effector fascin, an actin bundling protein.  相似文献   

15.
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine‐nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase‐activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase‐activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness .   相似文献   

16.
Mitochondrial uncoupling proteins (UCPs) play a central role in adaptive thermogenesis in mammals. The UCPs dissipate the proton gradient formed through respiration without ATP synthesis, and the freed energy is readily converted to heat, helping the animals to maintain their body temperature in cold environments. Recently, it was found that UCPs also function in plant mitochondria. Subsequently, a cDNA clone encoding a UCP in potato was isolated. Whereas the UCP gene constitutes a multigene family in mammals, only a single cDNA sequence has been reported so far for the potato UCP. Moreover, it has been recently suggested that Arabidopsis has only a single nuclear gene for UCP. Here we report the existence of another UCP gene in the Arabidopsis genome, showing for the first time the occurrence of a multigene family for the protein in higher plants. A cDNA analysis of this gene showed that the novel isoform possesses all typical features reported for known UCPs. However, the new gene, unlike the other gene in Arabidopsis and the gene in potato, did not appear to respond to low temperature.  相似文献   

17.
The Ypt/Rab family of small G-proteins is important in regulating vesicular transport. Rabs hydrolyze GTP very slowly on their own and require GTPase-activating proteins (GAPs). Here we report the identification and characterization of OsGAP1, a Rab-specific rice GAP. OsGAP1 strongly stimulated OsRab8a and OsRab11, which are homologs of the mammalian Rab8 and Rab11 proteins that are essential for Golgi to plasma membrane (PM) and trans-Golgi network (TGN) to PM trafficking, respectively. Substitution of two invariant arginines within the catalytic domain of Oryza sativa GTPase-activating protein 1 (OsGAP1) with alanines significantly inhibited its GAP activity. In vivo targeting experiments revealed that OsGAP1 localizes to the TGN or pre-vacuolar compartment (PVC). A yeast expression system demonstrated that wild-type OsGAP1 facilitates O. sativa dissociation inhibitor 3 (OsGDI3)-catalyzed OsRab11 recycling at an early stage, but the OsGAP1(R385A) and (R450A) mutants do not. Thus, GTP hydrolysis is essential for Rab recycling. Moreover, expression of the OsGAP1 mutants in Arabidopsis protoplasts inhibited the trafficking of some cargo proteins, including the PM-localizing H+-ATPase-green fluorescent protein (GFP) and Ca2+-ATPase8-GFP and the central vacuole-localizing Arabidopsis aleurain-like protein (AALP)-GFP. The OsGAP1 mutants caused these proteins to accumulate at the Golgi apparatus. Surprisingly, OsRab11 overproduction relieved the inhibitory effect of the OsGAP1 mutants on vesicular trafficking. OsRab8a had no such effect. Thus, the OsGAP1 mutants may inhibit TGN to PM or central vacuole trafficking because they induce the sequestration of endogenous Rab11. We propose that OsGAP1 facilitates vesicular trafficking from the TGN to the PM or central vacuole by both stimulating the GTPase activity of OsRab11 and increasing the recycling of inactive OsRab11.  相似文献   

18.
Transport Protein Particle II (TRAPPII) is essential for exocytosis, endocytosis, protein sorting and cytokinesis. In spite of a considerable understanding of its biological role, little information is known about Arabidopsis TRAPPII complex topology and molecular function. In this study, independent proteomic approaches initiated with TRAPP components or Rab‐A GTPase variants converge on the TRAPPII complex. We show that the Arabidopsis genome encodes the full complement of 13 TRAPPC subunits, including four previously unidentified components. A dimerization model is proposed to account for binary interactions between TRAPPII subunits. Preferential binding to dominant negative (GDP‐bound) versus wild‐type or constitutively active (GTP‐bound) RAB‐A2a variants discriminates between TRAPPII and TRAPPIII subunits and shows that Arabidopsis complexes differ from yeast but resemble metazoan TRAPP complexes. Analyzes of Rab‐A mutant variants in trappii backgrounds provide genetic evidence that TRAPPII functions upstream of RAB‐A2a, allowing us to propose that TRAPPII is likely to behave as a guanine nucleotide exchange factor (GEF) for the RAB‐A2a GTPase. GEFs catalyze exchange of GDP for GTP; the GTP‐bound, activated, Rab then recruits a diverse local network of Rab effectors to specify membrane identity in subsequent vesicle fusion events. Understanding GEF?Rab interactions will be crucial to unravel the co‐ordination of plant membrane traffic.  相似文献   

19.
20.
Synaptotagmin-like proteins 1-4 (Slp1-4) are new members of the carboxyl-terminal-type (C-type) tandem C2 proteins and are classified as a subfamily distinct from the synaptotagmin and the Doc2 families, because the Slp family contains a unique homology domain at the amino terminus, referred to as the Slp homology domain (SHD). We previously showed that the SHD functions as a binding site for Rab27A, which is associated with human hemophagocytic syndrome (Griscelli syndrome) [J. Biol. Chem. 277 (2002) 9212; J. Biol. Chem. 277 (2002) 12432]. In the present study, we identified a novel member of the Slp family, Slp5. The same as other Slp family members, the SHD of Slp5 preferentially interacted with the GTP-bound form of Rab27A and marginally with Rab3A and Rab6A, both in vitro and in intact cells, but not with other Rabs tested (Rab1, Rab2, Rab4A, Rab5A, Rab7, Rab8, Rab9, Rab10, Rab11A, Rab17, Rab18, Rab20, Rab22, Rab23, Rab25, Rab28, and Rab37). However, unlike other members of the Slp family, expression of Slp5 mRNA was highly restricted to human placenta and liver. Expression of Slp5 protein and in vivo association of Slp5 with Rab27A in the mouse liver were further confirmed by immunoprecipitation. The results suggest that Slp5 might be involved in Rab27A-dependent membrane trafficking in specific tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号