首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

1. 1.|Critical thermal maxima (CTMax) and minima (CTMin) were measured to evalute thermal hardening in Rana catesbeiana.

2. 2.|Tadpoles show heat hardening and CTMax acclimation, and both responses are influenced by developmental stage.

3. 3.|The first evidence of cold hardening in vertebrates is reported here.

4. 4.|Heat hardening significantly reduces cold tolerance, but there is otherwise no evidence of a cross-hardening effect.

Author Keywords: Thermal acclimation; thermal hardening; hardening; heat hardening; cold hardening; critical thermal maxima; critical thermal minima; developmental stage; metamorphosis; tadpoles; Rana catesbeiana  相似文献   


2.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

3.
Abscisic acid (ABA) and salicylic acid (SA) were sprayed on leaves of wheat genotypes C 306 and Hira at 25 and 40 d after sowing under moderate water stress (−0.8 MPa) imposed by adding PEG-6000 in nutrient solution. ABA and SA increased the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase in comparison to unsprayed control plants. Both ABA and SA treatments decreased the contents of hydrogen peroxide and thiobarbituric acid reactive substances, a measure of lipid peroxidation, compared to unsprayed plants. The beneficial effect of increase in antioxidant enzymes activity and decrease in oxidative stress was reflected in increase in chlorophyll and carotenoid contents, relative water content, membrane stability index, leaf area and total biomass over control plants. The lower concentrations of ABA (0.5 mM) and SA (1.0 mM) were generally more effective than higher concentrations.  相似文献   

4.
It has been observed that H9c2 cardiac cells cultured in physiologic solutions exhibit delayed cell death after repeated medium replacements, of which the cause was the relatively mild osmotic challenges during the renewal of the culture medium. Interestingly, the cell damage was associated with altered intracellular GSH homeostasis. Therefore, this study attempted to elucidate the effects of osmotic stress on GSH metabolism. In cells subjected to osmotic stress by lowering the NaCl concentration of the medium, the cell swelling was rapidly counterbalanced, but the intracellular GSH content was significantly lower in 3 h. Meanwhile, the ratio of GSH-to-GSSG was not affected. As expected, osmotic stress also increased the sensitivity to H2O2, which was attributable to the decrease of GSH content. The decrease of GSH content was similarly evident when the synthetic pathways of GSH were blocked by BSO or acivicin. It was concluded that osmotic stress induced the decrease of intracellular GSH content by increased consumption and this loss of GSH rendered the cells susceptible to a subsequent oxidative stress.  相似文献   

5.
Excess of free iron is thought to harm plant cells by enhancing the intracellular production of reactive oxygen intermediates (ROI). Cytosolic ascorbate peroxidase (cAPX) is an iron-containing, ROI-detoxifying enzyme induced in response to iron overload or oxidative stress. We studied the expression of cAPX in leaves of de-rooted bean plants in response to iron overload. cAPX expression, i.e., mRNA and protein, was rapidly induced in response to iron overload. This induction correlated with the increase in iron content in leaves and occurred in the light as well as in the dark. Reduced glutathione (GSH), which plays an important role in activating the ROI signal transduction pathway as well as in ROI detoxification, was found to enhance the induction of APX mRNA by iron. To determine whether cAPX induction during iron overload was due to an increase in the amount of free iron, which serves as a co-factor for cAPX synthesis, or due to iron-mediated increase in ROI production, we tested the expression of APX in leaves under low oxygen pressure. This treatment, which suppresses the formation of ROI, completely abolished the induction of cAPX mRNA during iron overload, without affecting the rate of iron uptake by plants. Taken together, our results suggest that high intracellular levels of free iron in plants lead to the enhanced production of ROI, which in turn induces the expression of cAPX, possibly using GSH as an intermediate signal. We further show, using cAPX-antisense transgenic plants, that cAPX expression is essential to prevent iron-mediated tissue damage in tobacco.  相似文献   

6.
Effects of Ca2+ ions on the intensity of lipid peroxidation, activities of guaiacol peroxidase, superoxide dismutase (SOD), and catalase, as well as on heat resistance of winter wheat (Triticum aestivium L.) coleoptiles were examined. A preliminary incubation of coleoptile segments in a 5 mM CaCl2 solution was shown to improve their survival rates after an injuring heat treatment (43.5°C). The effect of Ca2+ was suppressed by the inhibitor of Ca2+ channels (1 mM LaCl3). An incubation of coleoptiles in the presence of 5 mM CaCl2 prior to the stress treatment elevated the content of lipid peroxidation product, malondialdehyde (MDA) and stimulated the activities of guaiacol peroxidase, SOD, and catalase. After the heat exposure of untreated and Ca2+-treated seedlings, differential changes in MDA content and in activities of guaiacol peroxidase, SOD, and catalase were observed. It is concluded that a short-term oxidative stress arising in Ca2+-enriched plant tissues after the heat treatment is unrelated to their irreversible damage.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 227–232.Original Russian Text Copyright © 2005 by Kolupaev, Akinina, Mokrousov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

7.
The present experiment was performed to assess if hypomagnesemia can influence antioxidant status in mice heart. The results could explain possibly a free radical theory of heart damage in magnesium deficiency. We used a rodent model of hypomagnesemia. The magnesium sufficient group received a standard diet whereas a magnesium deficient group received the diet containing a trace amount of magnesium. The activities of the most important antioxidant enzymes – catalase, glutathione peroxidase and superoxide dismutase were assessed in mice heart and liver in a time dependent manner, on the 10th and the 20th day of experiment. The level of magnesium in plasma of animals receiving the magnesium deficient diet dropped twice after the 8th day and four times after the 13th day and then reached a plateau value. The activity of catalase in heart in the magnesium deficient group increased gradually and was significantly (P<0.05) elevated by 27% on the 20th day of experiment whereas the superoxide dismutase activity was significantly decreased by 17% on the 20th day. Glutathione peroxidase activity was insignificantly elevated. The alterations of antioxidant enzyme activities in the heart indicate cardiomyocytes's exposure to oxidative stress, which can be responsible for the cardiac lesions observed during hypomagnesemia.  相似文献   

8.
The effects of lindane administration (25-60 mg kg-1 for 24 h) on hepatic oxygen consumption were studied in the isolated perfused rat liver, in the absence and presence of the iron-chelator free-radical scavenger desferrioxamine. Lindane elicits a dose-dependent enhancement of total oxygen uptake by the liver, which is largely inhibited by 0.55 mM desferrioxamine. Total desferrioxamine- sensitive oxygen consumption exhibits a maximal increase (213 per cent) at 60 mg of lindane kg-1 over control values and represents 21 per cent of the total oxygen consumption. At the different doses of lindane used, it was calculated that about 60 per cent of the total increase in oxygen uptake by the liver is accounted for by oxygen related to oxidative stress, probably utilized at different stages of the induced lipid peroxidative process.  相似文献   

9.
Effect of stress on the antioxidant enzymes and gastric ulceration   总被引:6,自引:0,他引:6  
The effect of cold-restraint stress on the antioxidant enzymes of the rat gastric mucosa was studied with a view to finding out their role in stress induced gastric ulceration. Histological examination revealed stress induced extensive damage of the surface epithelial cell with lesions extending upto submucosa in some cases. Stress causes time-dependent increase in histamine and pepsin content but decrease in acid content of the gastric fluid with the progress of ulceration (ulcer index) for two hours. The tissue lipid peroxidation was significantly increased as evidenced by accumulation of malondialdehyde. Since lipid peroxidation results from the generation of reactive oxygen species, stress effect was studied on some antioxidant enzymes such as superoxide dismutase, peroxidases and prostaglandin synthetase as a function of time. The time dependent increase in stress ulcer correlates well with the concomitant increase in superoxide dismutase activity and decrease in peroxidase and prostaglandin synthetase activity. This creates a favourable condition for accumulation of endogenous H2O2 and more reactive hydroxyl radical (OH·). Administration of antioxidants such as reduced glutathione or sodium benzoate prior to stress causes significant decrease in ulcer index and lipid peroxidation and protection of gastric peroxidase activity suggesting the involvement of reactive oxygen species in stress induced gastric ulceration. This is supported by thein vitro observation that OH· can also inactivate peroxidase and induce lipid peroxidation. As prostaglandin is known to offer cytoprotection, stress-induced loss of prostaglandin synthetase activity appears to aggravate the oxidative damage caused by reactive oxygen species.Abbreviations ROS reactive oxygen species - GPO gastric peroxidase - SOD superoxide dismutase - MDA malondialdehyde - GSH reduced glutathione - TCA trichloroacetic acid  相似文献   

10.
Auxin autotrophic and heterotrophic tobacco callus lines were grown on MS medium with or without 100 mmol/L NaCl and growth and some of the stress-related activities, such as GPX, SOD, CAT, GST, GSH-PX, as well as the concentration of ethylene and H2O2, were measured and compared with each other. The auxin autotrophic calli grew slower, however, on the NaCl-containing medium the growth rate was higher than that of the heterotrophic cultures after two weeks of culturing. The stress-related ethylene production was lower in the autotrophic cultures and, contrary to the heterotrophic tissues, its level did not change significantly upon NaCl treatment. The guaiacol peroxidase (GPX) activities were higher in the autotrophic tissues in all cell fractions regardless of the presence of NaCl. Treated with NaCl, the GPX activities elevated in the soluble and covalently-bound fractions in the heterotrophic calli, but were not further increased in the autotrophic line. SOD and CAT activities were higher in the heterotrophic tissues, and were increased further by 100 mmol/L NaCl treatment. The GST and GSH-PX activities were higher in the autotrophic line, which might explain their enhanced stress tolerance. In the autotrophic tissues, the elevated antioxidant activities led to reduced levels of H2O2 and malondialdehyde; under mild NaCl stress, these levels decreased further. The lower growth rate and the effective protection against NaCl stress-induced oxidative damage of the autotrophic line can be explained by the cell wall-bound peroxidase and GSH-PX activities in the auxin autotrophic tissues. Their maintained growth rate indicates that the autotropic cultures were more resistant to exogenous H2O2.  相似文献   

11.
Chilling-enhanced photooxidation is the light- and oxygen-dependent bleaching of photosynthetic pigments that occurs upon the exposure of chilling-sensitive plants to temperatures below approximately 10 °C. The oxidants responsible for the bleaching are the reactive oxygen species (ROS) singlet oxygen (1O2), superoxide anion radical (O 2 ,hydrogen peroxide (H2O2), the hydroxyl radical (OH·), and the monodehydroascorbate radical (MDA) which are generated by a leakage of absorbed light energy from the photosynthetic electron transport chain. Cold temperatures slow the energy-consuming Calvin-Benson Cycle enzymes more than the energy-transducing light reactions, thus causing leakage of energy to oxygen. ROS and MDA are removed, in part, by the action of antioxidant enzymes of the Halliwell/Foyer/Asada Cycle. Chloroplasts also contain high levels of both lipid- and water-soluble antioxidants that act alone or in concert with the HFA Cycle enzymes to scavenge ROS. The ability of chilling-resistant plants to maintain active HFA Cycle enzymes and adequate levels of antioxidants in the cold and light contributes to their ability to resist chilling-enhanced photooxidation. The absence of this ability in chilling-sensitive species makes them susceptible to chilling-enhanced photooxidation. Chloroplasts may reduce the generation of ROS by dissipating the absorbed energy through a number of quenching mechanisms involving zeaxanthin formation, state changes and the increased usage of reducing equivalents by other anabolic pathways found in the stroma. During chilling in the light, ROS produced in chilling-sensitive plants lower the redox potential of the chloroplast stroma to such a degree that reductively-activated regulatory enzymes of the Calvin Cycle, sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) and fructose 1,6 bisphosphatase (EC 3.1.3.11), are oxidatively inhibited. This inhibition is reversible in vitro with a DTT treatment indicating that the enzymes themselves are not permanently damaged. The inhibition of SBPase and FBPase may fully explain the inhibition in whole leaf gas exchange seen upon the rewarming of chilling-sensitive plants chilled in the light. Methods for the study of ROS in chilling-enhanced photooxidation and challenges for the future are discussed.Abbreviations ASP ascorbate-specific peroxidase - -TH reduced -tocopherol - DTT dithiothreitol - FBP fructose 1,6 bisphosphate - FBPase fructose 1,6 bisphosphatase (EC 3.1.3.11) - HFA Cycle the Halliwell/Foyer/Asada Cycle responsible for the enzymatic removal of ROS in the chloroplast stroma - MDA monodehydroascorbate radical - MDAR monodehydroascorbate reductase - ROS reactive oxygen species - SBP sedohepulose 1,7 bisphosphate - SBPase sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) - SOD superoxide dismutase  相似文献   

12.
In order to better understand the role of cold acclimation in alleviating freezing injury, two barley cultivars with different cold tolerance, i.e. a sensitive cv. Chumai 1 and a tolerant cv. Mo 103, were used. The freezing treatment increased leaf soluble protein content more in the tolerant cultivar than in the sensitive one. Cold acclimation increased H2O2 content of the two cultivars during freezing treatment, especially in Mo 103. Glutathione and ascorbate contents during freezing and recovery were significantly higher in cold-acclimated plants than in non-acclimated ones. Activities of peroxidase, ascorbate peroxidase and glutathione reductase were also higher in cold-acclimated plants than non-acclimated plants during freezing treatment. However, there was no significant difference between cold-acclimated plants and the control plants in catalase activity. It may be assumed that cold acclimation induced H2O2 production, which in turn enhanced activities of antioxidative enzymes and synthesis of antioxidants, resulting in alleviation of oxidative stress caused by freezing.  相似文献   

13.
The effect of abscisic acid (ABA) on the tolerance to oxidative stress in a freshwater green alga, Chlamydomonas reinhardtii, was investigated. Exogenously added ABA enhanced the growth of this alga, which was observed under continuous illumination but not in the dark. The cells treated with ABA for 24 h showed tolerance to oxidative stress caused by exposure to paraquat or hydrogen peroxide. In the ABA‐treated cells, the activities of two antioxidant enzymes, catalase (CAT) and ascorbate peroxidase (APX), were significantly higher than those in the untreated control. The result suggests that ABA plays a role in the enhancement of tolerance to oxidative stress by increasing the activity of antioxidant enzymes.  相似文献   

14.
The objective of this study was to examine the role of antioxidant enzymes in waterlogging tolerance of pigeonpea (Cajanus cajan L. Halls) genotypes ICP 301 (tolerant) and Pusa 207 (susceptible). Waterlogging resulted in visible yellowing and senescence of leaves, decrease in leaf area, dry matter, relative water content and chlorophyll content in leaves, and membrane stability index in roots and leaves. The decline in all parameters was greater in Pusa 207 than ICP 301. Oxidative stress in the form of superoxide radical, hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) contents initially decreased, however at 4 and 6 d of waterlogging it increased over control plants, probably due to activation of DPI-sensitive NADPH-oxidase. Antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase also increased under waterlogging. The comparatively greater antioxidant enzyme activities resulting in less oxidative stress in ICP 301 could be one of the factor determining its higher tolerance to flooding as compared to Pusa 207. This study is the first to conclusively prove that waterlogging induced increase in ROS is via NADPH oxidase.  相似文献   

15.
We studied the impact of mild and severe drought stresses for 42 days and rehydration for 21 days on 4-year-old seedlings of Norway spruce. Water relations in spruce tissues were determined on the basis relative water content of needles and shoot water potential (Ψshoot). During the stress, we measured the level of: reactive oxygen species (ROS), antioxidants, and degradation of cell membranes. In the seedlings subjected to severe stress, Ψshoot decreased to −2.4 MPa, while in those subjected to mild stress, to −0.8 MPa. After rehydration, shoot water potential increased, but did not reach the control level. Water deficit caused oxidative stress, reflected in an increased production of ROS: superoxide anion radical ( ) and hydrogen peroxide (H2O2). Their concentrations in needles were the highest in seedlings subjected to severe stress, where they exceeded the control level by 116% and 30%, respectively. During rehydration, the differences in ROS levels between treated and control seedlings diminished. Oxidative stress causing degradation of cell membranes included: de-esterification of phospholipids, oxidation of fatty acids, and increase in concentration of malondialdehyde, as their permeability to ions increased by 125%. In the defence against the oxidative stress in needles, an important role was played by low-molecule antioxidants such as glutathione, ascorbic acid, flavonoids, α-tocopherol and antioxidant enzymes. An increase in intensity of water deficit caused a significant reductio in the level of low-molecular antioxidants, which attests to their utilization during the process of scavenging for free radicals. Water deficit at Ψshoot=−1.7 MPa caused a decline in ascorbic acid level by 37% in needle cells. An effective defensive mechanism removing the excess of ROS was also reflected in the activity of the main enzymes of oxidative stress: superoxide dismutase (SOD) and guaiacol peroxidase (PO). As a result of water deficit, SOD activity increased by 80 %, while PO activity decreased by 82 %.  相似文献   

16.
17.
18.
F2-isoprostanes (F2-IsoPs) are well-established sensitive and specific markers of oxidative stress in vivo. Isofurans (IsoFs) are also products of lipid peroxidation, but in contrast to F2-IsoPs, their formation is favored when oxygen tension is increased in vitro or in vivo. Mitochondrial dysfunction in Parkinson's disease (PD) may not only lead to oxidative damage to brain tissue but also potentially result in increased intracellular oxygen tension, thereby influencing relative concentrations of F2-IsoPs and IsoFs. In this study, we attempted to compare the levels of F2-IsoPs and IsoFs esterified in phospholipids in the substantia nigra (SN) from patients with PD to those of age-matched controls as well as patients with other neurodegenerative diseases, including dementia with Lewy body disease (DLB), multiple system atrophy (MSA), and Alzheimer's disease (AD). The results demonstrated that IsoFs but not F2-IsoPs in the SN of patients with PD and DLB were significantly higher than those of controls. Levels of IsoFs and F2-IsoPs in the SN of patients with MSA and AD were indistinguishable from those of age-matched controls. This preferential increase in IsoFs in the SN of patients with PD or DLB not only indicates a unique mode of oxidant injury in these two diseases but also suggests different underlying mechanisms of dopaminergic neurodegeneration in PD and DLB from those of MSA.  相似文献   

19.
This study aimed to further analyse the potential role of oxidative stress in children and adolescents with type 1 diabetes at clinical onset, during disease progression and when early microvascular complications ( + DC) appeared. Compared with age-matched controls, diabetic patients had greater oxidative damage to lipids, proteins and DNA demonstrated by analysis of plasma and erythrocyte malondialdehyde, carbonyl proteins and leukocyte 8-hydroxy-deoxyguanosine, all of which were significantly raised at onset, decreased during the first 1.5 years of evolution and rose progressively thereafter. Plasma lipid levels were significantly associated with lipid and protein oxidation products. Erythrocyte glutathione and glutathione-peroxidase activity were significantly decreased with the lowest values at onset and in + DC sub-groups. Insulin therapy in the first year improved metabolic and oxidant-antioxidant status and, consequently, hyperglycaemia-derived biomolecular oxidative damage. Diabetes-associated hyperlipidaemia is related to lipid and protein oxidation, thereby supporting the concept of glucotoxicity and lipotoxicity being inter-related. The overall increase in lipid, protein and DNA oxidative damage in diabetic patients with microangiopathy could be pathogenetically relevant in the early development of diabetes-related complications.  相似文献   

20.
To access contributions of inductive responses of the antioxidant enzymes in the resistance to salt stress, activities of the enzymes were determined in the rice (Oryza sativaL. cv. Dongjin) plant. In the leaves of the rice plant, salt stress preferentially enhanced the content of H2O2 as well as the activities of the superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase specific to guaiacol, whereas it induced the decrease of catalase activity. On the other hand, salt stress had little effect on the activity levels of glutathione reductase (GR). In order to analyze the changes of antioxidant enzyme isoforms against salt stress, plant extracts were subjected to native PAGE. Leaves of the rice plant had two isoforms of Mn-SOD and five isoforms of Cu/Zn-SOD. Fe-SOD isoform was not observed in the activity gels. Expression of Cu/Zn-1, -2, and Mn-SOD-2 isoforms was preferentially enhanced by salt stress. Seven APX isoforms were presented in the leaves of the rice plants. The intensities of APX-4 to -7 were enhanced by salt stress, whereas those of APX-1 to -3 were minimally in changed response to salt stress. There were seven GR isoforms in the leaves of rice plants. Levels of activity for most GR isoforms did not change in the stressed plants compared to the control plants. On the other hand, the levels of activity for most antioxidant enzymes changed little in the roots of stressed plants compared to the control plants. These results collectively suggest that SOD leads to the overproduction of hydrogen peroxide in the leaves of rice plants subjected to salt stress: The overproduction of hydrogen peroxide functions as the signal of salt stress, which induces the induction of specific APX isoforms but not specific GR isoforms under catalase deactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号