首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three ferulic acid esterases from the filamentous fungus Chrysosporium lucknowense C1 were purified and characterized. The enzymes were most active at neutral pH and temperatures up to 45 °C. All enzymes released ferulic acid and p-coumaric acid from a soluble corn fibre fraction. Ferulic acid esterases FaeA1 and FaeA2 could also release complex dehydrodiferulic acids and dehydrotriferulic acids from corn fibre oligomers, but released only 20% of all ferulic acid present in sugar beet pectin oligomers. Ferulic acid esterase FaeB2 released almost no complex ferulic acid oligomers from corn fibre oligomers, but 60% of all ferulic acid from sugar beet pectin oligomers. The ferulic acid esterases were classified based on both, sequence similarity and their activities toward synthetic substrates. The type A ferulic acid esterases FaeA1 and FaeA2 are the first members of the phylogenetic subfamily 5 to be biochemically characterized. Type B ferulic acid esterase FaeB2 is a member of subfamily 6.  相似文献   

2.
Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.  相似文献   

3.
ABSTRACT

Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.  相似文献   

4.
Xylanolytic enzymes, with both endo-xylanase and arabinoxylan arabinofuranohydrolase (AXH) activities, are attractive for the economically feasible conversion of recalcitrant arabinoxylan. However, their characterization and utilization of these enzymes in biotechnological applications have been limited. Here, we characterize a novel bifunctional enzyme, rAbf43A, cloned from a bacterial consortium that exhibits AXH and endo-xylanase activities. Hydrolytic pattern analyses revealed that the AXH activity belongs to AXHd3 because it attacked only the C(O)-3-linked arabinofuranosyl residues of double-substituted xylopyranosyl units of arabinoxylan and arabinoxylan-derived oligosaccharides, which are usually resistant to hydrolysis. The enzyme rAbf43A also liberated a series of xylo-oligosaccharides (XOSs) from beechwood xylan, xylohexaose and xylopentaose, indicating that rAbf43A exhibited endo-xylanase activity. Homology modelling based on AlphaFold2 and site-directed mutagenesis identified three non-catalytic residues (H161, A270 and L505) located in the substrate-binding pocket essential for its dual-functionality, while the mutation of A117 located in the −1 subsite to the proline residue only affected its endo-xylanase activity. Additionally, rAbf43A showed significant synergistic action with the bifunctional xylanase/feruloyl esterase rXyn10A/Fae1A from the same bacterial consortium on insoluble wheat arabinoxylan and de-starched wheat bran degradation. When rXyn10A/Fae1A was added to the rAbf43A pre-hydrolyzed reactions, the amount of released reducing sugars, xylose and ferulic acid increased by 9.43% and 25.16%, 189.37% and 93.54%, 31.39% and 32.30%, respectively, in comparison with the sum of hydrolysis products released by each enzyme alone. The unique characteristics of rAbf43A position it as a promising candidate not only for designing high-performance enzyme cocktails but also for investigating the structure–function relationship of GH43 multifunctional enzymes.  相似文献   

5.
The production of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum, grown on different carbon and nitrogen sources as well as different environmental conditions was investigated. Highest feruloyl esterase (225 mU/ml) and alpha-L-arabinofuranosidase (211 mU/ml) activities were obtained when P. brasilianum was grown on sugar beet pulp, whereas maximum xylanase (17 U/ml) activity was found during growth on oat spelt xylan. Yeast extract was the preferable nitrogen source for the production of all the three enzymes. Further optimization of the production of the crude enzyme mixture was examined by experimental design using a D-optimal quadratic model. Investigation of the microbial regulation of enzyme production showed that the presence of free ferulic acid further stimulated the production and pointing to that the fungal regulatory mechanism involved a coordinated production and secretion of feruloyl esterase, xylanase and alpha-L-arabinofuranosidase. Since agroindustrial by-products are a potential source of phenolic acids, crude enzyme mixtures of P. brasilianum were tested for their hydrolysis abilities against eight complex or model substrates. While total release of phenolic acids and pentoses was not observed, the synergistic enhancement of hydrolysis in the presence of feruloyl esterase was clearly demonstrated.  相似文献   

6.
We report the cloning and characterization of a gene encoding a ferulic acid esterase, faeA, from Aspergillus niger and Aspergillus tubingensis. The A. niger and A. tubingensis genes have a high degree of sequence identity and contain one conserved intron. The gene product, FAEA, was overexpressed in wild-type A. tubingensis and a protease-deficient A. niger mutant. Overexpression of both genes in wild-type A. tubingensis and an A. niger protease-deficient mutant showed that the A. tubingensis gene product is more sensitive to degradation than the equivalent gene product from A. niger. FAEA from A. niger was identical to A. niger FAE-III (C. B. Faulds and G. Williamson, Microbiology 140:779-787, 1994), as assessed by molecular mass, pH and temperature optima, pI, N-terminal sequence, and activity on methyl ferulate. The faeA gene was induced by growth on wheat arabinoxylan and sugar beet pectin, and its gene product (FAEA) released ferulic acid from wheat arabinoxylan. The rate of release was enhanced by the presence of a xylanase. FAEA also hydrolyzed smaller amounts of ferulic acid from sugar beet pectin, but the rate was hardly affected by addition of an endo-pectin lyase.  相似文献   

7.
The expression of 26 pectinolytic genes from Aspergillus niger was studied in a wild type strain and a CreA derepressed strain, under 16 different growth conditions, to obtain an expression profile for each gene. These expression profiles were then submitted to cluster analysis to identify subsets of genes with similar expression profiles. With the exception of the feruloyl esterase encoding genes, all genes were expressed in the presence of D-galacturonic acid, polygalacturonate, and/or sugar beet pectin. Despite this general observation five distinct groups of genes were identified. The major group consisted of 12 genes of which the corresponding enzymes act on the pectin backbone and for which the expression, in general, is higher after 8 and 24 h of incubation, than after 2 or 4 h. Two other groups of genes encoding pectin main chain acting enzymes were detected. Two additional groups contained genes encoding L-arabinose and D-galactose releasing enzymes, and ferulic acid releasing enzymes, respectively. The genes encoding beta-galactosidase and the L-arabinose releasing enzymes were not only expressed in the presence of D-galacturonic acid, but also in the presence of L-arabinose, suggesting that they are under the control of two regulatory systems. Similarly, the rhamnogalacturonan acetylesterase encoding gene was not only expressed in the presence of D-galacturonic acid, polygalacturonate and sugar beet pectin, but also in the presence of L-rhamnose. The data presented provides indications for a general pectinolytic regulatory system responding to D-galacturonic acid or a metabolite derived from it. In addition, subsets of pectinolytic genes are expressed in response to the presence of L-arabinose, L-rhamnose or ferulic acid.  相似文献   

8.
Production of extracellular beta-1,4-xylanase, alpha-L-arabinofuranosidase, feruloyl esterase, and acetyl xylan esterase from Aspergillus kawachii was higher in a culture supplemented with ferulic acid than in a counterpart. Culture supernatant grown on oat spelt xylan supplemented with ferulic acid exhibited an increase in ferulic acid-releasing activity from insoluble arabinoxylan relative as compared to that from the ferulic acid-free culture.  相似文献   

9.
The ability of members of Aspergillus sections Nigri, Flavi, and Terrei to produce feruloyl esterases was studied according to their substrate specificity against synthetic methyl esters of hydroxycinnamic acids. Type A feruloyl esterases (FAEA), induced during growth on cereal-derived products, show a preference for the phenolic moiety of substrates that contain methoxy substitutions, as found in methyl sinapinate, whereas type B feruloyl esterases (FAEB) show a preference for the phenolic moiety of substrates that contain hydroxyl substitutions, as occurs in methyl caffeate. All the strains of Aspergillus section Nigri (e.g., A. niger and A. foetidus) were able to produce feruloyl esterases with activity profiles similar to those reported for FAEA and FAEB of A. niger when grown on oat-spelt xylan and sugar beet pulp, respectively. The two genes encoding these proteins, faeA and faeB, were identified by Southern blot analysis. The strains of Aspergillus sections Flavi (e.g., A. flavus, A. flavo-furcatus, and A. tamarii) and Terrei (e.g., A. terreus) were able to produce type A and type B enzymes. faeA was revealed in genomic DNA of these strains, and FAEA was determined by immunodetection in cultures grown in oat-spelt xylan. In addition, type B enzymes, not related to faeB, were efficiently induced by oat-spelt xylan and exhibited very original activity profiles on sugar beet pulp. This work confirms that the members of the genus Aspergillus are good feruloyl esterase producers.  相似文献   

10.
The filamentous fungal strains Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, previously selected for the bioconversion of ferulic acid to vanillic acid and vanillin respectively, were grown on sugar beet pulp. A large spectrum of polysaccharide-degrading enzymes was produced by A. niger and very few levels of feruloyl esterases were found. In contrast, P. cinnabarinus culture filtrate contained low amount of polysaccharide-degrading enzymes and no feruloyl esterases. In order to enhance feruloyl esterases in A. niger cultures, feruloylated oligosaccharide-rich fractions were prepared from sugar beet pulp or cereal bran and used as carbon sources. Number of polysaccharide-degrading enzymes were induced. Feruloyl esterases were much higher in maize bran-based medium than in sugar beet pulp-based medium, demonstrating the ability of carbon sources originating from maize to induce the synthesis of feruloyl esterases. Thus, A. niger I-1472 could be interesting to release ferulic acid from sugar beet pulp or maize bran.  相似文献   

11.
The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production.  相似文献   

12.
Aspergillus niger I-1472 was grown on sugar beet pulp to produce cell wall polysaccharide-degrading enzymes, including feruloyl esterases. Compared to enzymatic activities measured in commercially available mixtures previously used for the release of ferulic acid, the A. niger enzymes were more various. These enzymes were tested to release ferulic acid from sugar beet pulp, maize bran, or autoclaved maize bran. They were as efficient as the commercial mixture to release ferulic acid from sugar beet pulp. On the other hand, they were much more efficient to release ferulic acid from maize bran after autoclaving pretreatment, as 95% of ferulic acid ester were solubilized. Thus, A. niger enzymes exhibited a high interest in the release of ferulic acid from various agro-industrial by-products.  相似文献   

13.
BACKGROUND: Degradation of the plant cell wall requires the synergistic action of a consortium of predominantly modular enzymes. In Clostridiae, these biocatalysts are organized into a supramolecular assembly termed a "cellulosome." This multienzyme complex possesses, in addition to its well-described cellulolytic activity, an apparatus specific for xylan degradation. Cinnamic acid esterases hydrolyze the ferulate groups involved in the crosslinking of arabinoxylans to lignin and thus play a key role in the degradation of the plant cell wall in addition to having promising industrial and medical applications. RESULTS: We have cloned and overexpressed the feruloyl esterase module from a 5 domain xylanase, Xyn10B from Clostridium thermocellum. The native structure at 1.6 A resolution has been solved with selenomethionine multiple wavelength anomalous dispersion and refined to a final R(free) of 17.8%. The structure of a hydrolytically inactive mutant, S954A, in complex with the reaction product ferulic acid has been refined at a resolution of 1.4 A with an R(free) of 16.0%. CONCLUSIONS: The C. thermocellum Xyn10B ferulic acid esterase displays the alpha/beta-hydrolase fold and possesses a classical Ser-His-Asp catalytic triad. Ferulate esterases are characterized by their specificity, and the active center reveals the binding site for ferulic acid and related compounds. Ferulate binds in a small surface depression that possesses specificity determinants for both the methoxy and hydroxyl ring substituents of the substrate. There appears to be a lack of specificity for the xylan backbone, which may reflect the intrinsic chemical heterogeneity of the natural substrate.  相似文献   

14.
15.
Feruloyl esterases act as accessory enzymes for the complete saccharification of plant cell wall hemicelluloses. Although many fungal feruloyl esterases have been purified and characterized, few bacterial phenolic acid esterases have been characterized. This study shows the extracellular production of a feruloyl esterase by the thermophilic anaerobe Clostridium stercorarium when grown on birchwood xylan. The feruloyl esterase was purified 500-fold in successive steps involving ultrafiltration, preparative isoelectric focusing and column chromatography by anion exchange, gel filtration and hydrophobic interaction. The purified enzyme released ferulic, rho-coumaric, caffeic and sinapinic acid from the respective methyl esters. The purified enzyme also released ferulic acid from a de-starched wheat bran preparation. At pH 8.0 and 65 degrees C, the Km and Vmax values for the hydrolysis of methyl ferulate were 0.04 mmol l-l and 131 micromol min-1 mg-1, respectively; the respective values for methyl coumarate were 0.86 mmol l-l and 18 micromol min-1 mg-1. The purified feruloyl esterase had an apparent mass of 33 kDa under denaturing conditions and showed optimum activity at pH 8.0 and 65 degrees C. At a concentration of 5 mmol l-l, the ions Ca2+, Cu2+, Co2+ and Mn2+ reduced the activity by 70-80%.  相似文献   

16.
A color-variant strain of Aureobasidium pullulans (NRRL Y-12974) produced α-L-arabinofuranosidase (α-L-AFase) when grown in liquid culture on sugar beet arabinan, wheat arabinoxylan, L-arabinose, L-arabitol, xylose, xylitol, oat spelt xylan, corn fiber, or arabinogalactan. L-Arabinose was most effective for production of both whole-broth and extracellular α-L-AFase activity, followed by L-arabitol. Oat spelt xylan, sugar beet arabinan, xylose, xylitol, and wheat arabinoxylan were intermediate in their ability to support α-L-AFase production. Lower amounts of enzyme activity were detected in corn fiber- and arabinogalactan-grown cultures. Received: 16 April 1998 / Accepted: 17 June 1998  相似文献   

17.
A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae2) was identified as a type C feruloyl esterase. The RuFae2 alone released ferulic acid from rice bran, wheat bran, wheat-insoluble arabinoxylan, corn fiber, switchgrass, and corn bran in the order of decreasing activity. Using a saturating amount of RuFae2 for 100 mg substrate, a maximum of 18.7 and 80.0 μg FA was released from 100 mg corn fiber and wheat-insoluble arabinoxylan, respectively. Addition of GH10 endoxylanase (EX) synergistically increased the release of FA with the highest level of 6.7-fold for wheat bran. The synergistic effect of adding GH11 EX was significantly smaller with all the substrates tested. The difference in the effect of the two EXs was further analyzed by comparing the rate in the release of FA with increasing EX concentration using wheat-insoluble arabinoxylan as the substrate.  相似文献   

18.
Microsomal membranes from etiolated wheat (Triticum aestivum) seedlings cooperatively incorporated xylose (Xyl), arabinose, and glucuronic acid residues from their corresponding uridine 5'-diphosphosugars into an ethanol-insoluble glucurono(arabino)xylan (GAX)-like product. A glucuronyltransferase activity that is enhanced by the presence of UDP-Xyl was also identified in these microsomes. Wheat glucuronyltransferase activity was optimal at pH 7 and required manganese ions, and several lines of evidence suggest its involvement in GAX-like biosynthesis. The GAX characteristics of the 14C-product were confirmed by digestion with a purified endo-xylanase from Aspergillus awamori (endo-xylanase III) and by total acid hydrolysis, resulting in a Xyl:arabinose:glucuronic acid molar ratio of approximately 105:34:1. Endo-xylanase III released only three types of oligosaccharides in addition to free Xyl. No radiolabel was released as xylobiose, xylotriose, or xylotetraose, indicating the absence of long stretches of unbranched Xyl residues in the nascent GAX-like product. High-pH anion exchange chromatography analysis of the resulting oligosaccharides along with known arabinoxylan oligosaccharide standards suggests that a portion of the nascent GAX-like product has a relatively regular structure. The other portion of the [14C]GAX-like polymer was resistant to proteinase K, endo-polygalacturonase, and endo-xylanase III (GH11 family) but was degraded by Driselase, supporting the hypothesis that the xylan backbone in this portion of the product is most likely highly substituted. Size exclusion chromatography indicated that the nascent GAX-like polymer had an apparent molecular mass of approximately 10 to 15 kD; however, mature GAXs from wheat cell walls had larger apparent molecular masses (>66 kD).  相似文献   

19.
Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.  相似文献   

20.
The efficient degradation of complex xylans needs collaboration of many xylan degrading enzymes. Assays for xylan degrading activities based on reducing sugars or PNP substrates are not indicative for the presence of enzymes able to degrade complex xylans: They do not provide insight into the possible presence of xylanase-accessory enzymes within enzyme mixtures. A new screening method is described, by which specific xylan modifying enzymes can be detected.Fermentation supernatants of 78 different fungal soil isolates grown on wheat straw were analyzed by HPLC and MS. This strategy is powerful in recognizing xylanases, arabinoxylan hydrolases, acetyl xylan esterases and glucuronidases.No fungus produced all enzymes necessary to totally degrade the substrates tested. Some fungi produce high levels of xylanase active against linear xylan, but are unable to degrade complex xylans. Other fungi producing relative low levels of xylanase secrete many useful accessory enzyme component(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号