首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of novel biomarkers by means of advanced detection tools based on proteomic analysis technologies necessitates the development of improved diagnostic methods for application in clinical routine. On the basis of three different application examples, this review presents the limitations of conventional routine diagnostic assays and illustrates the advantages of immunoaffinity enrichment combined with MALDI‐TOF MS. Applying this approach increases the specificity of the analysis supporting a better diagnostic recognition, sensitivity, and differentiation of certain diseases. The use of MALDI‐TOF MS as detection method facilitates the identification of modified peptides and proteins providing additional information. Further, employing respective internal standard peptides allows for relative and absolute quantitation which is mandatory in the clinical context. Although MALDI‐TOF MS is not yet established for clinical routine diagnostics this technology has a high potential for improvement of clinical diagnostics and monitoring therapeutic efficacy.  相似文献   

2.
Aims: Vibrio identification by means of traditional microbiological methods is time consuming because of the many biochemical tests that have to be performed to distinguish closely related species. This work aimed at evaluating the use of MALDI‐TOF mass spectrometry for the rapid identification of Vibrio (V.) spp. as an advantageous application to rapidly discriminate the most important Vibrio spp. and distinguish Vibrio spp. from closely related bacterial species like Photobacterium damselae and Grimontia hollisae and other aquatic bacteria like Aeromonas spp. Methods and Results: Starting from sub‐colony amounts of pure cultures grown on agar plates, a very simple sample preparation procedure was established and combined with a rapid and automated measurement protocol that allowed species identification within minutes. Closely related species like Vibrio alginolyticus and Vibrio parahaemolyticus or Vibrio cholerae and Vibrio mimicus could thus be differentiated by defining signatures of species‐identifying biomarker ions (SIBIs). As a reference method for species designation and for determination of relationships between strains with molecular markers, partial rpoB gene sequencing was applied. Conclusions: The MALDI‐TOF MS‐based method as well as the rpoB sequence‐based approach for Vibrio identification described in this study produced comparable classification results. The construction of phylogenetic trees from MALDI‐TOF MS and rpoB sequences revealed a very good congruence of both methods. Significance and Impact of the Study: Our results suggest that whole‐cell MALDI‐TOF MS‐based proteometric characterization represents a powerful tool for rapid and accurate classification and identification of Vibrio spp. and related species.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Ticks and fleas are vectors for numerous human and animal pathogens. Controlling them, which is important in combating such diseases, requires accurate identification, to distinguish between vector and non‐vector species. Recently, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) was applied to the rapid identification of arthropods. The growth of this promising tool, however, requires guidelines to be established. To this end, standardization protocols were applied to species of Rhipicephalus sanguineus (Ixodida: Ixodidae) Latreille and Ctenocephalides felis felis (Siphonaptera: Pulicidae) Bouché, including the automation of sample homogenization using two homogenizer devices, and varied sample preservation modes for a period of 1–6 months. The MS spectra were then compared with those obtained from manual pestle grinding, the standard homogenization method. Both automated methods generated intense, reproducible MS spectra from fresh specimens. Frozen storage methods appeared to represent the best preservation mode, for up to 6 months, while storage in ethanol is also possible, with some caveats for tick specimens. Carnoy's buffer, however, was shown to be less compatible with MS analysis for the purpose of identifying ticks or fleas. These standard protocols for MALDI‐TOF MS arthropod identification should be complemented by additional MS spectrum quality controls, to generalize their use in monitoring arthropods of medical interest.  相似文献   

10.
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases).  相似文献   

11.
Rapid and adequate identification of anaerobic bacterial species still presents a challenge for most diagnostic laboratories, hindering the selection of appropriate therapy. In this study, the identification capacity of 16S rRNA sequence analysis, VITEK 2 (BioMérieux, Lyon, France) compact analysis and VITEK MS‐mediated identification for anaerobic bacterial species was compared. Eighty‐five anaerobic bacterial isolates from 11 provinces in China belonging to 14 genera were identified by these three methods. Differences in identification between these three methods were compared. Consistent identification results were obtained for 54 (54/85, 63.5%) isolates by all three methods, the most discordant results being concentrated in Clostridium XI (n = 8) and Bacteroides fragilis (n = 9) clusters. Using the VITEK MS system, 74 (74/90, 82.2%) isolates were identified as single species consistent with 16S rRNA sequence analysis, which was significantly better than the results obtained with VITEK 2 Compact (P < 0.01). Misidentifications by the Vitek 2 Compact and Vitek MS systems were mainly observed in the Clostridium XI (n = 8)and B. fragilis clusters (n = 9). VITEK MS identified anaerobic bacteria even after they had been exposed to oxygen for a week. Identification by the Vitek MS system was more consistent with 16S rRNA sequence analysis than identification by Vitek 2 Compact. Continuous expansion of the VITEK MS database with rare described anaerobic species is warranted to improve both the efficiency and accuracy of VITEK MS identification in routine diagnostic microbiology.  相似文献   

12.
Arthropod‐borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time‐consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI‐TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI‐TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI‐TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control.  相似文献   

13.
MALDI‐TOF profiling of low molecular weight peptides (peptidome) usage is limited due to the lack of reproducibility from the confounding inferences of sample preparation, data acquisition, and processing. We applied MALDI‐TOF analysis to profile urine peptidome with the aims to: (i) compare centrifugal ultrafiltration and dialysis pretreatments, (ii) determine whether using signal LOD (sLOD), together with data normalization, may reduce MALDI‐TOF variability. We also investigated the influence of peaks detection on reproducibility. Dialysis allowed to obtain better MALDI‐TOF spectra than ultrafiltration. Within the 1000–4000 m/z range, we identified 120 and 129 peaks in intra‐ and interassay studies, respectively. To estimate the sLOD, serial dilution of pooled urines up to 1/256 were analyzed in triplicate. Six data normalization strategies were investigated–the mean, median, internal standard, relative intensity, TIC, and linear rescaling normalization. Normalization methods alone performed poorly in reducing features variability while when combined to sLOD adjustment showed an overall reduction in features CVs. Applying a feedback signal processing approach, after median normalization and sLOD adjustment, CVs were reduced from 103 to 26% and 113 to 25% for the intra‐ and interassay, respectively, and spectra became more comparable in terms of data dispersion.  相似文献   

14.
Sandflies (Diptera: Psychodidae) (Newstead, 1911) are blood‐feeding insects that transmit human pathogens including Leishmania (Trypanosomatida: Trypanosomatidae) parasites, causative agents of the leishmaniases. To elucidate Leishmania transmission cycles, conclusive identification of vector species is essential. Molecular approaches including matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) protein profiling have recently emerged to complement morphological identification. The aim of this study was to evaluate the effect of the trap type used to collect sandflies, specifically Centers for Disease Control (CDC) light or sticky traps, the two most commonly used in sandfly surveys, on subsequent MALDI‐TOF MS protein profiling. Specimens of five species (Phlebotomus ariasi, Phlebotomus papatasi, Phlebotomus perniciosus, Phlebotomus sergenti, Sergentomyia minuta) collected in periurban and agricultural habitats in southeast Spain were subjected to protein profiling. Acquired protein spectra were queried against an in‐house reference database and their quality assessed to evaluate the trap type effect. The results indicate that trap choice can substantially affect the quality of protein spectra in collected sandflies. Whereas specimens retrieved from light traps produced intense and reproducible spectra that allowed reliable species determination, profiles of specimens from sticky traps were compromised and often did not enable correct identification. Sticky traps should therefore not be used in surveys that deploy MALDI‐TOF MS protein profiling for species identification.  相似文献   

15.
16.
The applicability of the less specific protease elastase for the identification of membrane and cytosolic proteins has already been demonstrated. MALDI as ionization technique particularly favors the detection of basic and to a lesser extent of weakly acidic peptides, whereas neutral peptides often remain undetected. Moreover, peptides below 700 Da are routinely excluded. In the following study, the advantage of additional information gained from tandem mass tag zero labeled peptides and the resultant increase in sequence coverage was evaluated. Through derivatization with tandem mass tag reagents, peptide measurement within the standard mass range of the MALDI reflector mode is achievable due to the mass increase. Compared to the unlabeled sample, peptides exhibiting relatively low molecular masses, pI values or higher hydrophobicity could be identified.  相似文献   

17.
Yu SY  Wu SW  Khoo KH 《Glycoconjugate journal》2006,23(5-6):355-369
Concerted MALDI-MS profiling and CID MS/MS sequencing of permethylated glycans is one of the most effective approaches for high throughput glycomics applications. In essence, the identification of larger complex type N-glycans necessitates an unambiguous definition of any modification on the trimannosyl core and the complement of non-reducing terminal sequences which constitute the respective antennary structures. Permethylation not only affords analyses of both neutral and sialylated glycans at comparable ease and sensitivity but also yields more sequence-informative fragmentation pattern. Facile glycosidic cleavages directed mostly at N-acetylglucosamine under low energy CID, as implemented on a quadrupole/time-of-flight (Q/TOF) instrument, often afford multiple losses of the attached antenna resulting in characteristic ions related to the number of antennary branches on the trimannosyl core. Non-reducing terminal epitopes can be easily deduced but information on the linkage specific substituent on the terminal units is often missing. The high energy CID MS/MS afforded by TOF/TOF instrument can fill in the gap by giving an array of additional cross-ring and satellite ions. Glycosidic cleavages occurring specifically in concert with loss of 2-linked or 3-linked substituents provide an effective way to identify the branch-specific antennary extension. These characteristics are shown here to be effective in deriving the sequences of additionally galactosylated, sialylated and fucosylated terminal N-acetyllactosamine units and their antennary location. Together, a highly reproducible fragmentation pattern can be formulated to simplify spectral assignment. This work also provides first real examples of sequencing multiply sialylated complex type N-glycans by high energy CID on a TOF/TOF instrument. Shin-Yi Yu and Sz-Wei Wu contributed equally to this work. Dedicated to the late Prof. Yasuo Inoue, without whom the body of work represented by this article would not have been initiated in Taiwan.  相似文献   

18.
In this work, core‐shell magnetic metal organic framework (MOF) microspheres were successfully synthesized by coating magnetite particles with mercaptoacetic acid and subsequent reactions with ethanol solutions of Cu(OAc)2 and benzene‐1,3,5‐tricarboxylic acid (designated as H3btc) alternately. The resulting Fe3O4@[Cu3(btc)2] possess strong magnetic responsiveness. We applied the novel nanocomposites in the enrichment of low‐concentration standard peptides, peptides in MYO and BSA tryptic digests and in human urine in combination with MALDI‐TOF MS analysis for the first time. In addition, the Cu3(btc)2 MOF shells exhibit strong affinity to peptides, thus providing a rapid and convenient approach to the concentration of low‐abundance peptides. Notably, peptides at an extremely low concentration of 10 pM could be detected by MALDI‐TOF MS after enrichment with the magnetic MOF composites. In brief, the facile synthesis and efficient enrichment process of the Fe3O4@[Cu3(btc)2] microspheres make them promising candidates for the isolation of peptides in even complex biological environments.  相似文献   

19.
20.
To evaluate the ability of an insect cell-free protein synthesis system to carry out proper protein prenylation, several CAIX (X indicates any C-terminal amino acid) sequences were introduced into the C-terminus of truncated human gelsolin (tGelsolin). Tryptic digests of these mutant proteins were analyzed by MALDI-TOF MS and MALDI-quadrupole-IT-TOF MS. The results indicated that the insect cell-free protein synthesis system possesses both farnesyltransferase (FTase) and geranylgeranyltransferase (GGTase) I, as is the case of the rabbit reticulocyte lysate system. The C-terminal amino acid sequence requirements for protein prenylation in this system showed high similarity to those observed in rat prenyltransferases. In the case of rhoC, which is a natural geranylgeranylated protein, it was found that it could serve as a substrate for both prenyltransferases in the presence of either farnesyl or geranylgeranyl pyrophosphate, whereas geranylgeranylation was only observed when both prenyl pyrophosphates were added to the in vitro translation reaction mixture. Thus, a combination of the cell-free protein synthesis system with MS is an effective strategy to analyze protein prenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号