共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tripic T Edmondson DG Davie JK Strahl BD Dent SY 《Biochemical and biophysical research communications》2006,339(3):905-914
The Tup1-Ssn6 corepressor regulates the expression of diverse classes of genes in Saccharomyces cerevisiae. Chromatin is an important component of Tup1-Ssn6-mediated repression. Tup1 binds to underacetylated tails of histones H3 and H4, and requires multiple histone deacetylases for the repression. Here we examine if histone methylation, in addition to histone deacetylation, plays a role in Tup1-Ssn6 repression. We found that like other genes, Tup1-Ssn6 target genes exhibit increased levels of histone H3 lysine 4 trimethylation upon activation. However, deletion of individual or multiple histone methyltransferases and other SET-domain containing genes has no apparent effect on Tup1-Ssn6-mediated repression of a number of well-defined targets. Interestingly, we discovered that Ssn6 interacts with Set2. Although deletion of SET2 does not affect Tup1-Ssn6 repression of a number of target genes, Ssn6 may utilize Set2 in specific contexts to regulate gene repression. 相似文献
3.
4.
Ssn6-Tup1 is a general repressor of transcription in yeast. 总被引:108,自引:0,他引:108
5.
6.
The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. 总被引:6,自引:4,他引:6 下载免费PDF全文
The Cyc8 (Ssn6)-Tup1 corepressor complex is required for repression in several important regulatory systems in yeast cells, including glucose repression and mating type. Cyc8-Tup1 is recruited to target genes by interaction with diverse repressor proteins that bind directly to DNA. Since the complex has a large apparent molecular mass of 1,200 kDa on nondenaturing gels (F. E. Williams, U. Varanasi, and R. J. Trumbly, Mol. Cell. Biol. 11:3307-3316, 1991), we used a variety of approaches to determine its actual subunit composition. Immunoprecipitation of epitope-tagged complex and reconstitution of the complex from in vitro-translated proteins demonstrated that only the Cyc8 and Tup1 proteins were present in the complex. Hydrodynamic properties showed that these proteins have unusually large Stokes radii, low sedimentation coefficients, and high frictional ratios, all characteristic of asymmetry which partly accounts for the apparent high molecular weight. Calculation of native molecular weights from these properties indicated that the Cyc8-Tup1 complex is composed of one Cyc8 subunit and four Tup1 subunits. This composition was confirmed by reconstitution of the complex from Cyc8 and Tup1 expressed in vitro and analysis by one- and two-dimensional gel electrophoresis. 相似文献
7.
8.
9.
10.
11.
12.
13.
Structural basis for the transcriptional repressor NicR2 in nicotine degradation from Pseudomonas 下载免费PDF全文
Kunzhi Zhang Geng Wu Hongzhi Tang Chuanming Hu Ting Shi Ping Xu 《Molecular microbiology》2017,103(1):165-180
Nicotine is an environmental toxicant in tobacco wastes, imposing severe hazards for the health of human and other mammalians. NicR2, a TetR‐like repressor from Pseudomonas putida S16, plays a critical role in regulating nicotine degradation. Here, we determined the crystal structures of NicR2 and its complex with the inducer 6‐hydroxy‐3‐succinoyl‐pyridine (HSP). The N‐terminal domain of NicR2 contains a conserved helix‐turn‐helix (HTH) DNA‐binding motif, while the C‐terminal domain contains a cleft for its selective recognition for HSP. Residues R91, Y114 and Q118 of NicR2 form hydrogen bonds with HSP, their indispensable roles in NicR2's recognition with HSP were confirmed by structure‐based mutagenesis combined with isothermal titration calorimetry analysis. Based on sequence alignment and structure comparison, Tyr67, Tyr68 and Lys72 of HTH motif were corroborated to take the major responsibility for DNA‐binding using site‐directed mutants. The 30‐residue N‐terminal extension of NicR2, especially residues 21–30 in the TFR arm, is required for the association with the operator DNA. Finally, we proposed that either NicR2 or the DNA would undergo a conformational change upon their association. Altogether, our structural and biochemical investigations unravel how NicR2 selectively recognizes HSP and DNA, and provide new insights into the TetR family of repressors. 相似文献
14.
15.
16.
The Ssn6-Tup1 repressor forms one of the largest and most important gene-regulatory circuits in budding yeast. This circuit, which appears conserved in flies, worms and mammals, exemplifies how a 'global' repressor (i.e. a repressor that regulates many genes in the cell) can be highly selective in the genes it represses. It also explains how, given the appropriate signal, specific subsets of these genes can be derepressed. Ssn6-Tup1 seems especially robust, bringing about a high level of repression irrespective of its precise placement on DNA or of specific features of the DNA control regions of its target genes. This high degree of repression probably results from several distinct mechanisms acting together. 相似文献
17.
18.
19.
The yeast UME6 gene product is required for transcriptional repression mediated by the CAR1 URS1 repressor binding site. 总被引:22,自引:2,他引:22 下载免费PDF全文
URS1 is known to be a repressor binding site in Saccharomyces cerevisiae that negatively regulates expression of many genes including CAR1 (arginase), several required for sporulation, mating type switching, inositol metabolism, and oxidative carbon metabolism. In addition to the proteins previously shown to directly bind to the URS1 site, we show here that the UME6 gene product is required for URS1 to mediate repression of gene expression in the absence of inducer. We also show that mutations in the CAR80 (CARGRI) gene are allelic to those in UME6. 相似文献