首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bread wheat cultivar, Saratovskaya 29, (S29), its nearly isogenic lines carrying alien translocations [Lr9 from Aegilops umbellulata (Eg29) and (Lr19) from Agropyron elongatum (Ps29)] and two F1 hybrids between three nearly isogenic lines of S29 that differed by the Lr19+Rht1,Pro1+Pro2 and Ppd1+Ppd2 gene complexes, namely the S29 (Lr19+Rht1)/S29 (Ppd1+Ppd2) F1 and the S29 (Pro1+Pro2)/S29 (Lr19+Rht1) F1 were studied for their culture response with the following results. (1) Translocations with Lr9 and Lr19 decreased embryo frequency and green plant regeneration. (2) Both F1 hybrids showed a decrease in embryo frequency. One of the F1 hybrids, S29 (Lr19+Rht1)/S29 (Ppd1+Ppd2) showed a decrease, with respect to S29 for green plant regeneration; the other F1 S29 (Pro1+Pro2)/S29 (Lr19+Rht1), equalled S29 for green plant regeneration. (3) The gene complex of the F1 hybrid S29 (Pro1+Pro2)/S29 (Lr19+Rht1) was better than that of the F1 hybrid S29 (Lr19+Rht1)/S29 (Ppd1+Ppd2) for embryo induction and green plant regeneration. This effect was possibly induced by interactions between the Pro1+Pro2 and Lr19+Rht1 genes or was the result of direct actions of the Pro1+Pro2 genes.  相似文献   

2.
《Journal of bryology》2013,35(3):365-382
Abstract

The chromosomes of one moss and thirty liverworts are described and discussed taxonomically. Those of Lepidozia pearsonii (n = 8 + 1m), Telaranea murphyae (n = 9), Leioeolea badensis (n = 8 + 1m), Pleetoeolea paroiea (n = 9), Nardia compressa (n = 8 + 1m), N. geoscyphus (n = 9), Lophoeolea bispinosa (n = 8 + 1m), L. semiteres (n = 8 + 1m), Saccogyna viticulosa (n = 8 + 1m), Scapania curta (n = 16 + 2m), S. compacta (n = 8 + 1m), Porella laevigata (n = 8 + 1m) and P. cordaeana (n = 8 + 1m) are believed not to have been reported previously and, despite references in the literature to the cytology of Riccia crystallina and Gymnocolea inflata, reasons are given for suggesting that the present counts of n = 7 + 1m and n = 8 + 1m, respectively, may also be the first. The remaining species have been recorded cytologically in other parts of the world but not previously for Great Britain, or not with the present karyotype.  相似文献   

3.
Genomic in situ hybridization (GISH) has been used to study characteristics of the formation of alloplasmic lines detected among self-pollinated backcrossed progeny (BC1F5–BC1F8) of barley–wheat amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70). The chromosome material of the wild barley H. geniculatum has been shown to contribute to these lines. For example, fifth-generation plants (BC1F5) had genotypes (2n= 42w + 2g), (2n = 42w + 1g + 1tg), and (2n = 41w + 1g), where w is common wheat chromosomes, g is barley (H. geniculatum) chromosomes, and tg is the telocentric chromosome of wild barley. Beginning from theBC1F6 generation, alloplasmic telocentric addition lines (2n= 42 + 2tg) and (2n = 42 + 1tg) appear. This lines has been found cytogenetically unstable. The progeny of each of these cytological types include not only the (2n= 42 + 2tg) and (2n = 42 + 1tg) addition plants, but also plants with the monosomic (2n = 41 + 1tg) and the disomic (2n = 40 + 2tg) substitutions, as well as the (2n = 41 + 2tg) plants, which lack one wheat chromosome and have two telocentric barley chromosomes. It has been demonstrated that the selection for well-filled grains favors the segregation of telocentric addition lines (2n = 42 + 2tg) and (2n = 42 + 1tg).  相似文献   

4.
On the basis of the newly revised nomenclature system of cry genes, the PCR amplification method has been adopted to resolve the cry gene combinations of 294 Bacillus thuringiensis isolates from five selected areas of Taiwan. Our results indicate that cry1 (especially cry1A + 1B + 1F) and cry2 were the most abundant cry genes in Taiwan. In contrast, cry3 and cry6 genes were detected only on Yang Ming Mountain, while the cry13 gene was found only on Snow Mountain. In addition, some distinctive combinations of cry genes were detected in distinct areas of Taiwan, such as cry1C, cry1D, cry1C + 1D, cry4, cry1 + 4, cry1 + 11, cry4 + 11, and cry1 + 4 + 11 in the Taipei area; cry1A + 1C + 1F in the Taichung area; cry1E and cry1A + 1B + 1I on Yang Ming Mountain; cry1 + 13, cry1 + 2 + 11, and cry1 + 2 + 13 on Snow Mountain; and cry1 + 5 and cry1 + 2 + 5 on Jade Mountain. These data clearly indicate that the distribution of cry gene combinations of B. thuringiensis isolates seems to be geographically related.  相似文献   

5.
A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd2+, Zn2+, Cu2+, and NaCl stress. Transgenic yeast also accumulated more Cd2+, Zn2+, and NaCl, but not Cu2+. Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd2+) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd2+, Zn2+, Cu2+, and NaCl stress in ThMT3-transgenic yeast. H2O2 levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd2+, Zn2+, Cu2+, and NaCl stress in the transgenic yeast. Cd2+, Zn2+, and Cu2+ increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.  相似文献   

6.
The effects of exogenous hormones, used for estrus synchronization and ovarian hyper stimulation, on cumulus oocyte complexes (COCs) gene expression in sexually mature rats were determined using microarrays. Gene expression in COCs collected from GnRH (Gtrt), GnRH + eCG (G + Etrt), and GnRH + eCG + hCG (G + E + Htrt) treatments were compared to COCs from naturally cycling (NC) rats before the preovulatory luteninizing hormone surge. There was no significant difference in gene expression among NC, Gtrt, and G + Etrt; however, over 2,600 genes were significantly different between NC and G + E + Htrt (P < 0.05). Genes upregulated in G + E + Htrt encode for: proteins that are involved in prostaglandin synthesis (Ptgs2, Pla2g4a, and Runx1) and cholesterol biosynthesis (Hmgcr, Sc4mol, and Dhcr24); receptors that allow cholesterol uptake (Ldlr and Scarb1), regulate progesterone synthesis (Star), and inactivate estrogen (Sult1e1); and downstream effectors of LH signal (Pgr, Cebpb, Creb3l1, Areg, Ereg, and Adamts1). Conversely, G + E + Htrt downregulated genes encoding proteins involved in: DNA replication and cell cycle progression (Ccne2, Orc5l, Rad50, and Mcm6); reproductive developmental process; and granulosa cell expansion (Gdf9, Bmp15, Amh, Amhr2, Bmpr1b, Tgfb2, Foxl2, Pde3a, Esr2, Fshr, Ybx2, Ccnd2, Ccnb1ip1, and Zp3); maternal effect genes required for embryo development (Zar1, Npm2, Nlrp5, Dnmt1, H1foo, and Zfp57); amino acid degradation; and ketogenesis (Hmgcs2, and Cpt1b). These results from the rat show that hormones used for estrus synchronization (Gtrt) and ovarian hyper stimulation (G + Etrt) had minimal effects on gene expression, whereas induction of ovulation (G + E + Htrt) caused major changes in gene expression of rat COCs. This study provides comprehensive information about regulated genes during late follicle development and ovulation induction. Mol. Reprod. Dev. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Anaerobic degradation of long-chain fatty acids (LCFA) involves syntrophic bacteria and methanogens, but facultative anaerobic bacteria (FAB) might have a relevant role as well. Here we investigated oleate degradation by a syntrophic synthetic co-culture of Syntrophomonas zehnderi (Sz) and Methanobacterium formicicum (Mf) and FAB (two oleate-degrading Pseudomonas spp. I1 + I2). Sz + Mf were first cultivated in a continuous bioreactor under strict anaerobic conditions. Thereafter, I1 + I2 were inoculated and microaerophilic conditions were provided. Methane and acetate were the main degradation products by Sz + Mf in anaerobiosis and by Sz + Mf + I1 + I2 in microaerophilic conditions. However, acetate production from oleate was higher in microaerophilic conditions (5% O2) with the four microorganisms together (0.41 ± 0.07 mmol day−1) than in anaerobiosis with Sz + Mf (0.23 ± 0.05 mmol day−1). Oleate degradation in batch assays was faster by Sz + Mf + I1 + I2 (under microaerophilic conditions) than by Sz + Mf alone (under strict anaerobic conditions). I1 + I2 were able to grow with oleate and with intermediates of oleate degradation (hydrogen, acetate and formate). This work highlights the importance of FAB, particularly Pseudomonas sp., in anaerobic reactors treating oleate-based wastewater, because they accelerate oleate conversion to methane, by protecting strict anaerobes from oxygen toxicity and also by acting as alternative hydrogen/formate and acetate scavengers for LCFA-degrading anaerobes.  相似文献   

8.
9.
We isolated and characterized a nickel (Ni2+)-resistant mutant (GA1) of Schizosaccharomyces pombe. This mutant strain displayed resistance to both Ni2+ and Zn2+, but not to Cd2+, Co2+, and Cu2+. The growth rate of GA1 increased proportionally with increasing Mg2+ concentrations until 50 mM Mg2+. The GA1 mutation phenotype suggests a defect in Mg2+ uptake. Sequence analysis of the GA1 open reading frame (ORF) O13779, which is homologous to the prokaryotic and eukaryotic CorA Mg2+ transport systems, revealed a point mutation at codon 153 (ccc to acc) resulting in a Pro 153Thr substitution in the N-terminus of the CorA domain. Our results provide novel genetic information about Ni2+ resistance in fission yeast. Specifically, that reducing Mg2+ influx through the CorA Mg2+ transport membrane protein confers Ni2+ resistance in S. pombe. We also report that Ni2+ ion detoxification of the fission yeast is related to histidine metabolism and pH.  相似文献   

10.
11.
A flocculent strain of Saccharomyces cerevisiae S646-1B accumulated more Cu2+ (81 nmol mg–1 dry wt) than the isogenic (except for the marker genes ade1 and trp1 and the gene FLO1) non-flocculent strain S646-8D (30 nmol mg–1 dry wt), in the first 10 min of contact of the cells with Cu2+. Additionally, this strain flocculated in solutions of 0.2 mM Cu2+, Ni2+, Zn2+ and Cd2+. The potential of using flocculent strains in the bioremediation of heavy metals contaminated waste waters is discussed.  相似文献   

12.
1. Compared to lakes and streams, we know relatively little about the factors that regulate algae in freshwater wetlands. This discrepancy is particularly acute in boreal regions, where wetlands are abundant and processes related to climate change (i.e. increased permafrost collapse and soil weathering) are expected to increase nutrient inputs into aquatic systems. To investigate how accelerated nutrient inputs might affect algal structure and function in northern boreal wetlands, we added nitrogen, phosphorus and silica to mesocosms in an oligotrophic marsh in interior Alaska. 2. We conducted two in situ mesocosm enrichment experiments during consecutive summer growing seasons, each lasting 24 days. In 2007, we investigated the effects of +N, +P, +Si and +N+P+Si enrichment on benthic algal biomass (chlorophyll‐a, ash‐free dry mass, biovolume), chemistry (N : P ratio) and community composition. In 2008, we expanded our first experiment to investigate the effects +N+P, +N+Si, +P+Si and +N+P+Si on the same algal parameters as well as productivity (mg C m?2 h?1). 3. In both experiments, we measured water‐column dissolved organic carbon (DOC) inside treatment enclosures and related changes in DOC to standing algal biomass. 4. Benthic algal accrual did not increase following 24 days of enrichment with any nutrient alone or with P and Si together (+P+Si), but increased significantly with the addition of N in any combination with P and Si (+N+P, +N+Si, +N+P+Si). 5. Algal productivity (20 mg C m?2 h?1) increased between three‐ and seven‐fold (57–127 mg C m?2 h?1) with the addition of N in combination with any other nutrient (+N+P, +N+Si, +N+P+Si). Water‐column DOC concentration was significantly higher inside N‐combination treatments compared to the control during each season, and DOC increased linearly with benthic algal biomass in 2007 (r2 = 0.89, P < 0.0001) and 2008 (r2 = 0.74, P < 0.0001). 6. Taxonomic composition of the wetland algal community responded most strongly to N‐combination treatments in both seasons. In 2007, there was a significant shift from Euglena and Mougeotia in the control treatment to Chroococcus and Gloeocystis with +N+P+Si enrichment, and in 2008, a Mougeotia‐dominated community was replaced by Gloeocystis in the +N+P treatment and by Nitzschia in +N+Si and +N+P+Si treatments. 7. Together, these data provide several lines of evidence for co‐limitation, and the central importance of N as a co‐limiting nutrient for the wetland algal community. Changes in algal dynamics with increased nutrient concentrations could have important implications for wetland food webs and suggest that algae may provide a functional link between increasing nutrient inputs and altered wetland carbon cycling in this region.  相似文献   

13.
The difference equation f b :[0,1]–[0,1] defined by f b (x)=b x(1–x) is studied. In particular complete qualitative information is obtained for the parameter value b=3.83. For example the number of fixed points of (f b )i is given by
Ni = 1 + ( \frac1 + ?5 2 )i + ( \frac1 - ?5 2 )iN_i = 1 + \left( {\frac{{1 + \sqrt 5 }}{2}} \right)^i + \left( {\frac{{1 - \sqrt 5 }}{2}} \right)^i  相似文献   

14.
Murashige and Skoog’s (MS) medium was supplemented with supernatant of Halomonas desiderata RE1 in different combinations to observe the impact of bacterial auxin on in vitro growth of Brassica oleracea L. Three groups of combinations MS + BS (Bacterial supernatant), MS + BS + 10% CW (coconut water) and MS + BS + 4 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) were considered. Different amounts of BS used in each combination were 50, 100, 150 and 200 μl in 5 ml MS medium. Media combinations inoculated with seeds, internodal explants and callus of B. oleracea L. were incubated in a growth chamber at 25 ± 1°C and exposed to 16-h cool fluorescent light. Seeds inoculated on MS + BS and MS + BS + 10% CW, shoot elongation was observed over control whereas this response was suppressed in 2,4-D-containing media. In explants inoculated on MS + BS, MS + BS + 10% CW and MS + BS + 4 mg l−1 2,4-D different responses such as callus induction, adventitious shoot induction and hypertrophy were observed at different supernatant treatments. In callus inoculation, callus proliferation was observed in most of the treatments at different media combinations.  相似文献   

15.
Summary When crossed to strain GR25 [rho+], petites lacking in mtDNA were neutral, but when crossed to a related [rho+] strain (GR25a) they were found to be suppressive (Table 1). Likewise, crosses of GR25 [rho+] and GR25a [rho+] to a common [rho+] parent were, respectively, neutral and suppressive (Table 1). The suppressive phenotype observed in these crosses was attributed to a factor in the [rho+] strain GR25a. Strain GR25a also differed from strain GR25 in having a decreased [rho+] stability (Table 2) and a decreased transmission of its cytoplasmically-inherited erythromycin-resistance marker to zygote progeny (Table 4). These three phenotypes of GR25a are, discussed in terms of a nuclear mutation in a gene responsible for the maintenance of the [rho+] state.  相似文献   

16.
We report the hierarchical supramolecular organization of metallosupramolecular homochiral complexes 1 ‐Λ‐(S,S,S,S)‐M2+/ 1 ‐?‐(R,R,R,R)‐M2+ and 2 ‐ Λ‐(S,S,S,S)‐M2+/ 2 ‐?‐ (R,R,R,R)‐M2+ of M2+ = Co2+, Fe2+, Zn2+ metal ions with chiral pseudo‐terpyridine‐type ligands: 1‐ (S,S) or 1‐ (R,R) = 2,6‐bis (naphthyl ethylimine)pyridine and 2‐ (S,S) or 2‐ (R,R) = 2,6‐bis (phenyl‐ethylimine)pyridine. Circular dichroism measurements in solution were used to confirm the enantiomeric nature of all twelve complexes. For crystal structures of 1 ‐ Λ‐ (S,S,S,S)‐M2+ or 1 ‐?‐ (R,R,R,R)‐M2+ complexes, absolute configurations {? (or P), Λ (or M)} were confirmed by refinement of the Flack parameter x: ?0.007 ≤ x ≤ 0.11 for the single crystals of 1 ‐Λ‐(S,S,S,S)‐M2+/ 1 ‐?‐ (R,R,R,R)‐M2+, 2 ‐ Λ‐ (S,S,S,S)‐Fe2+, and 2 ‐?‐ (R,R,R,R)‐Co2+.  相似文献   

17.
Natural ( + )-(1R,2S,3S)-methyl cucurbate (1b) and the ( – )-δ-lactone of 3-epi-cucurbic acid (16) were synthesized from (+)-(1R,6S,7R)-bicyclo [4.3.0] non-3-en-7-ol (5). Asymmetric hydrolysis of the acetate (8) of ( ± )-5 with pancreatin gave optically pure the ( + )-(7R)-alcohol (5) and (–)-(7S)-acetate (8). An ozonolysis product of ( + )-5 was transformed to ( – )-16 and ( + )-(3S)-1b with inversion of the (7R)-hydroxyl group. Similarly, unnatural (–)-1b and (+)-16 were prepared from optically pure ( — )-5. The growth inhibitory activities of these synthesized chiral compounds toward lettuce seedlings were examined.  相似文献   

18.
Long‐chain base phosphates (LCBPs) have been correlated with amounts of crucial biological processes ranging from cell proliferation to apoptosis in animals. However, their functions in plants remain largely unknown. Here, we report that LCBPs, sphingosine‐1‐phosphate (S1P) and phytosphingosine‐1‐phosphate (Phyto‐S1P), modulate pollen tube growth in a concentration‐dependent bi‐phasic manner. The pollen tube growth in the stylar transmitting tissue was promoted by SPHK1 overexpression (SPHK1‐OE) but dampened by SPHK1 knockdown (SPHK1‐KD) compared with wild‐type of Arabidopsis; however, there was no detectable effect on in vitro pollen tube growth caused by misexpression of SPHK1. Interestingly, exogenous S1P or Phyto‐S1P applications could increase the pollen tube growth rate in SPHK1‐OE, SPHK1‐KD and wild‐type of Arabidopsis. Calcium ion (Ca2+)‐imaging analysis showed that S1P triggered a remarkable increase in cytosolic Ca2+ concentration in pollen. Extracellular S1P induced hyperpolarization‐activated Ca2+ currents in the pollen plasma membrane, and the Ca2+ current activation was mediated by heterotrimeric G proteins. Moreover, the S1P‐induced increase of cytosolic free Ca2+ inhibited the influx of potassium ions in pollen tubes. Our findings suggest that LCBPs functions in a signaling cascade that facilitates Ca2+ influx and modulates pollen tube growth.  相似文献   

19.
Using electromobility shift assay the interaction of fragments of two paralogous rat estrogen sulfotransferase (Ste) genes with proteins of nuclear extracts from male and female rat liver was studied. Male-specific DNA–protein complexes were revealed with labeled oligonucleotides corresponding to fragments +1150/+1449, +1358/+1449, +1397/+1449, and +1417/+1449 of intron 1 of the Ste1 gene. The removal of a 20 bp region corresponding to the sequence +1430/+1449, or even either 5"- or 3"-terminal 5 bp of this region abolished the selective interaction of the oligonucleotides with the malespecific protein(s). According to the results of the experiments on mutual competition of the oligonucleotides, the fragment of the Ste2 gene corresponding to the sequence +1397/+1449 of the Ste1 gene formed complexes with the same male-specific protein(s) as the fragment of the Ste1 gene did. The data suggest the mapped element to participate in gender differentiation of the expression of the Ste1 and Ste2 genes.  相似文献   

20.
Saccharomyces cerevisiae cells require two genes, CSG1/SUR1 and CSG2, for growth in 50 mM Ca2+, but not 50 mM Sr2+. CSG2 was previously shown to be required for the mannosylation of inositol-phosphorylceramide (IPC) to form mannosylinositolphosphorylceramide (MIPC). Here we demonstrate that SUR1/CSG1 is both genetically and biochemically related to CSG2. Like CSG2, SUR1/CSG1 is required for IPC mannosylation. A 93–amino acid stretch of Csg1p shows 29% identity with the α-1, 6-mannosyltransferase encoded by OCH1. The SUR1/CSG1 gene is a dose-dependent suppressor of the Ca2+-sensitive phenotype of the csg2 mutant, but overexpression of CSG2 does not suppress the Ca2+ sensitivity of the csg1 mutant. The csg1 and csg2 mutants display normal growth in YPD, indicating that mannosylation of sphingolipids is not essential. Increased osmolarity of the growth medium increases the Ca2+ tolerance of csg1 and csg2 mutant cells, suggesting that altered cell wall synthesis causes Ca2+-induced death. Hydroxylation of IPC-C to form IPC-D requires CCC2, a gene encoding an intracellular Cu2+ transporter. Increased expression of CCC2 or increased Cu2+ concentration in the growth medium enhances the Ca2+ tolerance of csg1 mutants, suggesting that accumulation of IPC-C renders csg1 cells Ca2+ sensitive. Received: 11 November 1996 / Accepted: 21 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号