首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined cyclic nucleotide-regulated phosphorylation of the neuronal type I inositol 1,4,5-trisphosphate (IP3) receptor immunopurified from rat cerebellar membranes in vitro and in rat cerebellar slices in situ. The isolated IP3 receptor protein was phosphorylated by both cAMP- and cGMP-dependent protein kinases on two distinct sites as determined by thermolytic phosphopeptide mapping, phosphopeptide 1, representing Ser-1589, and phosphopeptide 2, representing Ser-1756 in the rat protein (Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H. (1991) Biochem. Biophys. Res. Commun. 175, 192-198). Phosphopeptide maps show that cAMP-dependent protein kinase (PKA) labeled both sites with the same time course and same stoichiometry, whereas cGMP-dependent protein kinase (PKG) phosphorylated Ser-1756 with a higher velocity and a higher stoichiometry than Ser-1589. Synthetic decapeptides corresponding to the two phosphorylation sites (peptide 1, AARRDSVLAA (Ser-1589), and peptide 2, SGRRESLTSF (Ser-1756)) were used to determine kinetic constants for the phosphorylation by PKG and PKA, and the catalytic efficiencies were in agreement with the results obtained by in vitro phosphorylation of the intact protein. In cerebellar slices prelabeled with [32P]orthophosphate, activation of endogenous kinases by incubation in the presence of cAMP/cGMP analogues and specific inhibitors of PKG and PKA induced in both cases a 3-fold increase in phosphorylation of the IP3 receptor. Thermolytic phosphopeptide mapping of in situ labeled IP3 receptor by PKA showed labeling on the same sites (Ser-1589 and Ser-1756) as in vitro. In contrast to the findings in vitro, PKG preferentially phosphorylated Ser-1589 in situ. Because both PKG and the IP3 receptor are specifically enriched in cerebellar Purkinje cells, PKG may be an important IP3 receptor regulator in vivo.  相似文献   

2.
Protein phosphatases play key roles in cellular regulation and are subjected to control by protein inhibitors whose activity is in turn regulated by phosphorylation. Here we investigated the possible regulation of phosphorylation-dependent type-1 protein phosphatase (PP1) inhibitors, CPI-17, PHI-1, and KEPI, by various kinases. Protein kinases A (PKA) and G (PKG) phosphorylated CPI-17 at the inhibitory site (T38), but not PHI-1 (T57). Phosphorylated CPI-17 inhibited the activity of both the PP1 catalytic subunit (PP1c) and the myosin phosphatase holoenzyme (MPH) with IC(50) values of 1-8 nM. PKA predominantly phosphorylated a site distinct from the inhibitory T73 in KEPI, whereas PKG was ineffective. Integrin-linked kinase phosphorylated KEPI (T73) and this dramatically increased inhibition of PP1c (IC(50)=0.1 nM) and MPH (IC(50)=8 nM). These results suggest that the regulatory phosphorylation of CPI-17 and KEPI may involve distinct kinases and signaling pathways.  相似文献   

3.
In this study we describe the expression and function of the two rat type-1 inositol 1,4,5-trisphosphate receptor (InsP3R) ligand binding domain splice variants (SI+/-/SII+). Receptor protein from COS-1 cells transfected with the type-1 InsP3R expression plasmids (pInsP3R-T1, pInsP3R-T1ALT) or control DNA were incorporated into planar lipid bilayers and the single channel properties of the recombinant receptors were defined. The unitary conductance of the two splice variants were approximately 290 pS with Cs+ as charge carrier and approximately 65 pS with Ca2+ as charge carrier. Both InsP3R expression products consistently behaved like those of the native type-1 receptor isoform isolated from cerebellum in terms of their InsP3, Ca2+, and heparin sensitivity. An InsP3 receptor ligand binding domain truncation lacking the 310 amino-terminal amino acids (pInsP3R-DeltaT1ALT) formed tetrameric complexes but failed to bind InsP3 with high affinity, and did not form functional Ca2+ channels when reconstituted in lipid bilayers. These data suggest that 1) the ligand binding alternative splice site is functionally inert in terms of InsP3 binding and single channel function, and 2) the single channel properties of the expressed recombinant type-1 channel are essentially identical to those of the native channel. This work establishes a foundation from which molecular/biophysical approaches can be used to define the structure-function properties of the InsP3 receptor channel family.  相似文献   

4.
Inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are channels responsible for calcium release from the endoplasmic reticulum (ER). We show that the anti-apoptotic protein Bcl-2 (either wild type or selectively localized to the ER) significantly inhibited InsP3-mediated calcium release and elevation of cytosolic calcium in WEHI7.2 T cells. This inhibition was due to an effect of Bcl-2 at the level of InsP3Rs because responses to both anti-CD3 antibody and a cell-permeant InsP3 ester were decreased. Bcl-2 inhibited the extent of calcium release from the ER of permeabilized WEHI7.2 cells, even at saturating concentrations of InsP3, without decreasing luminal calcium concentration. Furthermore, Bcl-2 reduced the open probability of purified InsP3Rs reconstituted into lipid bilayers. Bcl-2 and InsP3Rs were detected together in macromolecular complexes by coimmunoprecipitation and blue native gel electrophoresis. We suggest that this functional interaction of Bcl-2 with InsP3Rs inhibits InsP3R activation and thereby regulates InsP3-induced calcium release from the ER.  相似文献   

5.
The molecular basis of capacitative (or store-operated) Ca2+ entry is still subject to debate. The transient receptor potential proteins have been hypothesized to be structural components of store-operated Ca2+ channels and recent evidence suggests that Trp3 and its closely related homolog Trp6 are gated by the N-terminal region of the inositol 1,4,5-triphosphate receptors (InsP3R). In this study, we report the existence of two isoforms of the human Trp4 protein, referred to as alpha-hTrp4 and beta-hTrp4. The shorter variant beta-hTrp4 is generated through alternative splicing and lacks the C-terminal amino acids G785-S868. Using a yeast two-hybrid assay and glutathione-S-transferase-pulldown experiments, we found that the C-terminus of alpha-hTrp4, but not of beta-hTrp4, associates in vitro with the C-terminal domain of the InsP(3) receptors type 1, 2 and 3. Thus, we describe a novel interaction between Trp proteins and InsP3R and we provide evidence suggesting that the formation of hTrp4-InsP3R complexes may be regulated by alternative splicing.  相似文献   

6.
Chromosomal high mobility group (HMG) proteins have been examined as substrates for cGMP-dependent and cAMP-dependent protein kinases. Of the four HMG proteins only HMG 14 contained a major high affinity site which could be phosphorylated by both enzymes, preferentially by cGMP-dependent protein kinase. One mol of 32P was incorporated/mol of HMG 14. Kinetic analysis revealed apparent Km and Vmax of 40.5 microM and 14.7 mumol/min/mg, respectively, for cGMP-dependent protein kinase, and 123 microM and 11.1 mumol/min/mg, respectively, for cAMP-dependent protein kinase. Tryptic maps of 32P-labeled phosphopeptides of HMG 14 demonstrated phosphorylation of the same site by both enzymes. The tryptic fragment containing the major phosphorylation site was identified by amino acid composition and sequence as HMG 14 (residues 4-13): H-Lys-Val-Ser(P)-Ser-Ala-Glu-Gly-Ala-Ala-Lys-OH. HMG 14 and HMG 17 also contained minor sites which could be phosphorylated by cGMP-dependent protein kinase. Tryptic phosphopeptides mapping suggested that the same minor site was phosphorylated on both HMG 14 and 17. On the basis of amino acid composition, the tryptic peptides carrying the minor phosphorylation sites were identified as H-Leu-Ser(P)-Ala-Lys representing residues 23-26 and 27-30 of HMG 14 and HMG 17, respectively.  相似文献   

7.
An intraperitoneal injection of either leucine (1.57 mg/g body wt) or valine (2 mg/g body wt) into newborn mice led to a rapid accumulation of inactive monoribosomes in their brains. Invitro measurements of protein synthesis by the remaining active ribosomes in leucine-treated mice revealed that polypeptide chain elongation was also inhibited. When a mixture of the seven amino acids from the leucine transport system was injected (0.15 mg each amino acid/g body wt) following the valine or leucine treatment, brain monoribosomes did not accumulate and elongation rates in the leucine-treated mice were only slightly altered.  相似文献   

8.
The subtype- and splice variant-specific modulation of inositol 1,4,5-trisphosphate receptors (InsP3R) by interaction with cellular factors plays a fundamental role in defining the characteristics of Ca2+ release in individual cell types. In this study, we investigate the binding properties and functional consequences of the expression of a putative nucleotide binding fold (referred to as the ATPC site) unique to the S2- splice variant of the type-1 InsP3R (InsP3R-1), the predominant splice variant in peripheral tissue. A glutathione S-transferase fusion protein encompassing amino acids 1574-1765 of the S2- InsP3R-1 and including the glycine-rich motif Gly-Tyr-Gly-Glu-Lys-Gly bound ATP specifically as measured by fluorescent trinitrophenyl-ATP binding. This binding was completely abrogated by a point mutation (G1690A) in the nucleotide binding fold. The functional sensitivity of S2- InsP3R-1 constructs was evaluated in DT40-3KO-M3 cells, a null background for InsP3R, engineered to express muscarinic M3 receptors. The S2- InsP3R-1 containing the G1690A mutation was markedly less sensitive to agonist stimulation than wild type S2- InsP3R-1 or receptors containing a similar (Gly --> Ala) mutation in the established nucleotide binding sites in InsP3R-1 (the ATPA and ATPB sites). The ATP sensitivity of InsP3-induced Ca2+ release, however, was not altered by the G1690A mutation when measured in permeabilized DT40-3KO cells, suggesting a unique role for the ATPC site. Ca2+ release was dramatically potentiated following activation of cAMP-dependent protein kinase in DT40-3KO cells transiently expressing wild type S2- InsP3R or Gly --> Ala mutations in the ATPA and ATPB sites, but phosphorylation of the receptor and the potentiation of Ca2+ release were absent in cells expressing the G1690A mutation in S2- InsP3R. These data indicate that ATP binding specifically to the ATPC site in S2- InsP3R-1 controls the susceptibility of the receptor to protein kinase A-mediated phosphorylation, contributes to the functional sensitivity of the S2- InsP3R-1 and ultimately the sensitivity of cells to agonist stimulation.  相似文献   

9.
The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893-3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likely involves the interceding sequence (i.e., the regulatory/coupling domain). The single channel functional attributes of the full-length recombinant type-1, -2, and -3 InsP3R channels have been defined. Here, two type-1/type-2 InsP3R regulatory/coupling domain chimeras were created and their single channel function defined. One chimera (1-2-1) contained the type-2 regulatory/coupling domain in a type-1 backbone. The other chimera (2-1-2) contained the type-1 regulatory/coupling domain in a type-2 backbone. These chimeric proteins were expressed in COS cells, isolated, and then reconstituted in proteoliposomes. The proteoliposomes were incorporated into artificial planar lipid bilayers and the single-channel function of the chimeras defined. The chimeras had permeation properties like that of wild-type channels. The ligand regulatory properties of the chimeras were altered. The InsP3 and Ca2+ regulation had some unique features but also had features in common with wild-type channels. These results suggest that different independent structural determinants govern InsP3R permeation and ligand regulation. It also suggests that ligand regulation is a multideterminant process that involves several different regions of the protein. This study also demonstrates that a chimera approach can be applied to define InsP3R structure-function.  相似文献   

10.
A recombinant protein (Lbs-1) containing the N-terminal 581 amino acids of the mouse type 1 inositol 1,4,5-trisphosphate receptor (IP3R-1), including the complete IP3-binding site, was expressed in the soluble fraction of E. coli. The characteristics of IP3 binding to this protein were similar as observed previously for the intact IP3R-1. Ca2+ dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 200 nM. This effect represented a decrease in the affinity of Lbs-1 for IP3, because the Kd increased from 115 +/- 15 nM in the absence to 196 +/- 18 nM in the presence of 5 microM Ca2+. The maximal effect of Ca2+ on Lbs-1 (5 microM Ca2+, 42.0 +/- 6.4% inhibition) was similar to the maximal inhibition observed for microsomes of insect Sf9 cells expressing full-length IP3R-1 (33.8 +/- 10.2%). Conceivably, the two contiguous Ca2+-binding sites (residues 304-450 of mouse IP3R-1) previously found by us (Sienaert, I., Missiaen, L., De Smedt, H., Parys, J.B., Sipma, H., and Casteels, R. (1997) J. Biol. Chem. 272, 25899-25906) mediate the effect of Ca2+ on IP3 binding to IP3R-1. Calmodulin also dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 3 microM. Maximal inhibition (10 microM calmodulin, 43.1 +/- 5.9%) was similar as observed for Sf9-IP3R-1 microsomes (35.8 +/- 8.7%). Inhibition by calmodulin occurred independently of Ca2+ and was additive to the inhibitory effect of 5 microM Ca2+ (together 74.5 +/- 5.1%). These results suggest that the N-terminal ligand-binding region of IP3R-1 contains a calmodulin-binding domain that binds calmodulin independently of Ca2+ and that mediates the inhibition of IP3 binding to IP3R-1.  相似文献   

11.
The binding of inositol 1,4,5-trisphosphate (IP3) to the IP3 receptor (IP3R) is modulated by various compounds. Until now, limited progress has been made concerning the isoform-specific effects of these modulators. In this study, we examined how [3H]IP3 binding to the three IP3R isoforms is modulated by cyclic ADP-ribose (cADPR) and by the SH-reagent thimerosal. We used rabbit cerebellum, RBL-2H3 rat mucosal mast cells and 16HBE14o- human bronchial epithelial cells as model systems for IP3R-1, -2 and -3 respectively. [3H]IP3 binding was first characterized at various pH values. We showed that [3H]IP3 binding to RBL-2H3 microsomes was more enhanced by increasing the pH from 7.4 to 8.3 than that to rabbit cerebellar microsomes. In contrast, [3H]IP3 binding to 16HBE14o- microsomes was not stimulated at alkaline pH. At pH 7.4, cADPR (50 microM) increased [3H]IP3 binding to rabbit cerebellar microsomes, RBL-2H3 and 16HBE14o- microsomes 1.5-fold, 1.3-fold and 1.8-fold respectively. The effect of cADPR on IP3 binding was abolished at pH 8.3. Scatchard analysis indicated that cADPR induced in cerebellum a decrease in IP3 affinity (KD increases from 150 nM to 252 nM) of the IP3R and a parallel increase in Bmax (from 4.8 pmol/mg to 11.1 pmol/mg). Thimerosal dose-dependently increased [3H]IP3 binding to rabbit cerebellar microsomes. The stimulatory effects of cADPR and thimerosal were not additive. Binding to cerebellar microsomes returned to control level in the presence of 500 microM thimerosal. In contrast, thimerosal (up to 500 microM) had no stimulatory effect and only a very slight, if any, inhibitory effect on [3H]IP3 binding to RBL-2H3 and 16HBE14o- microsomes respectively. These results indicate that IP3 binding to the IP3R isoforms can be differentially modulated by cADPR and thimerosal.  相似文献   

12.
13.
We compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP(3)R1 and IP(3)R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well as GST-FKBP12.6 were able to bind approximately 30% of the solubilized RyR3. The interaction was completely abolished by FK506, strengthened by the addition of Mg(2+), and weakened in the absence of Ca(2+) but was not affected by the addition of cyclic ADP-ribose. By using proteolytic mapping and site-directed mutagenesis, we pinpointed Val(2322), located in the central modulatory domain of the RyR3, as a critical residue for the interaction of RyR3 with FKBPs. Substitution of Val(2322) for leucine (as in IP(3)R1) or isoleucine (as in RyR2) decreased the binding efficiency and shifted the selectivity to FKBP12.6; substitution of Val(2322) for aspartate completely abolished the FKBP interaction. Importantly, the occurrence of the valylprolyl residue as alpha-helix breaker was an important determinant of FKBP binding. This secondary structure is conserved among the different RyR isoforms but not in the IP(3)R isoforms. A chimeric RyR3/IP(3)R1, containing the core of the FKBP12-binding site of IP(3)R1 in the RyR3 context, retained this secondary structure and was able to interact with FKBPs. In contrast, IP(3)Rs did not interact with the FKBP isoforms. This indicates that the primary sequence in combination with the local structural environment plays an important role in targeting the FKBPs to the intracellular Ca(2+)-release channels. Structural differences in the FKBP-binding site of RyRs and IP(3)Rs may contribute to the occurrence of a stable interaction between RyR isoforms and FKBPs and to the absence of such interaction with IP(3)Rs.  相似文献   

14.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

15.
The type 1 inositol (1,4,5)-trisphosphate receptor (InsP3R1) plays a critical role in Ca2+ signaling in cells. Neuronal and nonneuronal isoforms of the InsP3R1 differ by alternative splicing in the coupling domain of the InsP3R1 (SII site). Deletion of 107 amino acids from the coupling domain of the InsP3R1 results in epileptic-like behaviors in opisthotonos (opt) spontaneous mouse mutant. Using Spodoptera frugiperda cells expression system, we compared single-channel behavior of recombinant InsP3R1-SII(+), InsP3R1-SII(-), and InsP3R1-opt channels in planar lipid bilayers. The main results of our study are: 1) the InsP3R1-SII(-) has a higher conductance (94 pS) and the InsP3R1-opt has a lower conductance (64 pS) than the InsP3R1-SII(+) (81 pS); 2) the bell-shaped Ca2+-dependence peaks at 200-300 nM Ca2+ for all three InsP3R1 isoforms; 3) the bell-shaped Ca2+-dependence is wider for the InsP3R1-SII(+) and narrower for the InsP3R1-SII(-) and InsP3R1-opt; 4) the apparent affinity for ATP is sixfold lower for the InsP3R1-SII(-) (1.4 mM) and 20-fold lower for the InsP3R1-opt (5.3 mM) than for the InsP3R1-SII(+) (0.24 mM); 5) the InsP3R1-SII(-) is approximately twofold more active than the InsP3R1-SII(+) in the absence of ATP. Obtained results provide novel information about the molecular determinants of the InsP3R1 function.  相似文献   

16.
2-Aminoethoxydiphenylborate (2-APB) inhibits the extent of inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) release from cerebellar microsomes with a potency that is dependent upon the InsP(3) concentration used. At high InsP(3) concentrations (10 microM), the concentration of 2-APB required to cause half-maximal InsP(3)-induced Ca(2+) release (IC(50)) was greater than 1 mM, while at 0.25 microM InsP(3) this reduced to 220 microM. The fact that the inhibition of the extent of InsP(3)-induced Ca(2+) release (IICR) by 2-APB was not restored to control levels by high concentrations of InsP(3), in addition to the fact 2-APB did not substantially inhibit [3H]InsP(3) binding to its receptor, indicates that the inhibition is not competitive in nature. Since the cooperativity of IICR as a function of InsP(3) was reduced in the presence of 2-APB (Hill coefficient changing from 1.9 in the absence of 2-APB to 1.4 in the presence of 1 mM 2-APB), this suggests that it is acting as an allosteric inhibitor. 2-APB also reduces the rate constants for IICR. In cerebellar microsomes this release process is biphasic in nature, with a fast and slow phase. 2-APB appears particularly to affect the fast-phase component. Although 2-APB does not inhibit the ryanodine receptor, it does inhibit the Ca(2+) ATPase activity as well store-operated Ca(2+) entry channels, which may limit its use as a specific membrane permeant InsP(3) receptor inhibitor.  相似文献   

17.
Stimulation of various cell surface receptors leads to the production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) through phospholipase C (PLC) activation, and the IP3 and DAG in turn trigger Ca2+ release through IP3 receptors and protein kinase C activation, respectively. The amount of IP(3) produced is particularly critical to determining the spatio-temporally coordinated Ca(2+)-signaling patterns. In this paper, we report a novel signal cross-talk between DAG and the IP3-mediated Ca(2+)-signaling pathway. We found that a DAG derivative, 1-oleoyl-2-acyl-sn-glycerol (OAG), induces Ca2+ oscillation in various types of cells independently of protein kinase C activity and extracellular Ca2+. The OAG-induced Ca2+ oscillation was completely abolished by depletion of Ca2+ stores or inhibition of PLC and IP3 receptors, indicating that OAG stimulates IP3 production through PLC activation and thereby induces IP3-induced Ca2+ release. Furthermore, intracellular accumulation of endogenous DAG by a DAG-lipase inhibitor greatly increased the number of cells responding to agonist stimulation at low doses. These results suggest a novel physiological function of DAG, i.e. amplification of Ca2+ signaling by enhancing IP3 production via its positive feedback effect on PLC activity.  相似文献   

18.
The dynamics of inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) production during periods of G-protein-coupled receptor-mediated Ca2+ oscillations have been investigated using the pleckstrin homology (PH) domain of phospholipase C (PLC) delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). Activation of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed in the same Chinese hamster ovary cell indicates that Ca2+ responses to these G-protein-coupled receptors are stimulus strength-dependent. Thus, activation of alpha1B receptors produced transient base-line Ca2+ oscillations, sinusoidal Ca2+ oscillations, and then a steady-state plateau level of Ca2+ as the level of agonist stimulation increased. Activation of M3 receptors, which have a higher coupling efficiency than alpha1B receptors, produced a sustained increase in intracellular Ca2+ even at low levels of agonist stimulation. Confocal imaging of eGFP-PHPLCdelta1 visualized periodic increases in Ins(1,4,5)P3 production underlying the base-line Ca2+ oscillations. Ins(1,4,5)P3 oscillations were blocked by thapsigargin but not by protein kinase C down-regulation. The net effect of increasing intracellular Ca2+ was stimulatory to Ins(1,4,5)P3 production, and dual imaging experiments indicated that receptor-mediated Ins(1,4,5)P3 production was sensitive to changes in intracellular Ca2+ between basal and approximately 200 nM. Together, these data suggest that alpha1B receptor-mediated Ins(1,4,5)P3 oscillations result from a positive feedback effect of Ca2+ onto phospholipase C. The mechanisms underlying alpha1B receptor-mediated Ca2+ responses are therefore different from those for the metabotropic glutamate receptor 5a, where Ins(1,4,5)P3 oscillations are the primary driving force for oscillatory Ca2+ responses (Nash, M. S., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (2001) Nature 413, 381-382). For alpha1B receptors the Ca2+-dependent Ins(1,4,5)P3 production may serve to augment the existing regenerative Ca2+-induced Ca2+-release process; however, the sensitivity to Ca2+ feedback is such that only transient base-line Ca2+ spikes may be capable of causing Ins(1,4,5)P3 oscillations.  相似文献   

19.
Ryanodine and inositol 1,4,5-trisphosphate (IP(3)) receptors - two related families of Ca(2+) channels responsible for release of Ca(2+) from intracellular stores [1] - are biphasically regulated by cytosolic Ca(2+) [2] [3] [4]. It is thought that the resulting positive feedback allows localised Ca(2+)-release events to propagate regeneratively, and that the negative feedback limits the amplitude of individual events [5] [6]. Stimulation of IP(3) receptors by Ca(2+) occurs through a Ca(2+)-binding site that becomes exposed only after IP(3) has bound to its receptor [7] [8]. Here, we report that rapid inhibition of IP(3) receptors by Ca(2+) occurs only if the receptor has not bound IP(3). The IP(3) therefore switches its receptor from a state in which only an inhibitory Ca(2+)-binding site is accessible to one in which only a stimulatory site is available. This regulation ensures that Ca(2+) released by an active IP(3) receptor may rapidly inhibit its unliganded neighbours, but it cannot terminate the activity of a receptor with IP(3) bound. Such lateral inhibition, which is a universal feature of sensory systems where it improves contrast and dynamic range, may fulfil similar roles in intracellular Ca(2+) signalling by providing increased sensitivity to IP(3) and allowing rapid graded recruitment of IP(3) receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号