首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of tert-butyl hydroperoxide (t-BOOH) on the formation of thromboxane (TX) B2, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) from exogenous arachidonic acid (AA) in washed rabbit platelets was examined. t-BOOH enhanced TXB2 and HHT formation at concentrations of 8 microM and below, and at 50 microM it inhibited the formation, suggesting that platelet cyclooxygenase activity can be enhanced or inhibited by t-BOOH depending on the concentration. t-BOOH inhibited 12-HETE production in a dose-dependent manner. When the platelets were incubated with 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12-HPETE) instead of AA, t-BOOH failed to inhibit the conversion of 12-HPETE to 12-HETE, indicating that the inhibition of 12-HETE formation by t-BOOH occurs at the lipoxygenase step. Studies utilizing indomethacin (a selective cyclooxygenase inhibitor) and desferrioxamine (an iron-chelating agent) revealed that the inhibitory effect of t-BOOH on the lipoxygenase is not mediated through the activation of the cyclooxygenase and that this effect of t-BOOH is due to the hydroperoxy moiety. These results suggest that hydroperoxides play an important role in the control of platelet cyclooxygenase and lipoxygenase activities.  相似文献   

2.
Although HHT accounts for approximately one third of the arachidonic acid (AA) metabolites produced by stimulated platelets, no well defined function has been attributed to this product. We report that HHT stimulates prostacyclin production by endothelial cells, and have identified the mechanism for this effect. In human umbilical venous endothelial cells, HHT (0.5 and 1 microM) stimulated prostacyclin (RIA for 6KPGF1 alpha) by 32 +/- 22% (1SD) and 42 +/- 38% (P less than 0.05 and less than 0.01). Similar changes were observed when the effect of HHT on exogenous [1-14C] AA metabolism in fetal bovine aortic endothelial cells (FBAECs) was studied. Kinetic analyses revealed that HHT affected vascular cyclooxygenase. HHT (1 microM) increased Vmax in test microsomes (706 +/- 21 pmol/mg/min, mean +/- 1SE) when compared to controls (529 +/- 20; P less than 0.02). No concomitant effect on Km was observed. A further effect of HHT on AA release from endothelial cell membrane phospholipids was noted. Prelabeling experiments revealed that HHT (1 microM) increased the ionophore stimulated release of AA from FBAECs (20952 +/- 555 cpm/well control mean +/- 1SE vs 25848 +/- 557 for paired HHT treated cells; P less than 0.05). The effect of HHT on platelet AA metabolism was next studied. Preincubation of washed platelets with HHT (1 microM) did not enhance thrombin or arachidonic acid induced platelet TXB2 formation. In platelets prelabelled with [1-14C]AA, HHT (1 microM) had no effect on AA release post thrombin stimulation. Conversion to cyclooxygenase metabolites was also not enhanced. HHT stimulates vascular prostacyclin without a concomitant effect on platelet AA metabolism. HHT may thus be an important local modulator of platelet plug formation.  相似文献   

3.
The 15-hydroperoxyeicosatetraenoic acid (15-HPETE) has been shown to affect platelet aggregation induced by collagen, arachidonic acid (AA), and PGH2-analogue. Furthermore, it also inhibits the platelet cyclooxygenase and lipoxygenase enzymes, and prostacyclin synthase. The present study was designed to test the effect of 15-HPETE on the mobilization of endogenous AA in collagen-stimulated human platelets. For this purpose, human platelets pretreated with BW755C (a dual inhibitor of cyclooxygenase and lipoxygenase) were stimulated with collagen in the presence of varied concentrations of 15-HPETE. We observed a significant inhibition of oxygenases at all concentrations of 15-HPETE. In contrast, our results indicate that 15-HPETE at lower concentrations (10 microM and 30 microM) significantly stimulated the collagen-induced release of AA from phospholipid sources. Although higher concentrations of 15-HPETE (50 microM and 100 microM) caused some inhibition of AA accumulation in the free fatty acid fraction (25% and 60%), the degree of inhibition was significantly lower than the inhibition observed for the oxygenases (65% and 88% for cyclooxygenase and 77% and 94% for lipoxygenase respectively). These results provide support that hydroperoxides also regulate phospholipases presumably by a different mechanism, which may be important in the detoxification of phospholipid peroxides.  相似文献   

4.
Before one can examine the effects of substances on the metabolism of arachidonic acid (AA) by the cyclooxygenase and lipoxygenase pathways, an assay system which allows one to detect increases or decreases in both pathways in needed. In order to develop such a system, we have examined nonaggregating washed human platelets (10(8) platelets/0.5 ml) incubated for various times with 2 microCi 3H-AA and increasing concentrations of AA. T/B2, HHT, 12-HETE, and AA were extracted and separated using reverse phase-HPLC. We first calculated the mass of AA products formed with 10(-7) to 10(-4) M AA and found that the cyclooxygenase was saturated with 10(-5) M AA whereas the lipoxygenase was not saturated with 10(-4) M AA. Cyclooxygenase products were more prevalent than 12-HETE below 10(-5) M AA, while lipoxygenase products predominated at 3 x 10(-5)-10(-4) M AA. Using 3 microM AA, which does not saturate the cyclooxygenase, we examined the effect of 0.25-10 minute incubation durations on the distribution of AA metabolites and found AA product formation to increase throughout this period without completely depleting the substrate. Since substrate depletion does not occur and further metabolism could be detected for both pathways with a 5 minute incubation with 3 microM AA, these incubation parameters were chosen in order to further test the assay system. Using these parameters, we found that 10(-4) M 5-hydroxytryptamine enhanced platelet 12-HETE formation and decreased T/B2 and HHT formation, thus demonstrating the capacity of this system to simultaneously detect changes in cyclooxygenase and lipoxygenase enzyme metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The in vitro effect of trichosanic acid (TCA; C18:3, omega-5), a major component of Trichosanthes japonica, on platelet aggregation and arachidonic acid (AA) metabolism in human platelets was studied. TCA dose-dependently suppressed platelet aggregation of platelet rich plasma and washed platelets. TCA decreased collagen (50 micrograms/ml)-stimulated production of thromboxane B2 (TXB2) and 12-hydroxyhepta-decatrienoic acid (HHT) in a dose-dependent manner, while that of 12-hydroxyeicosatetraenoic acid (12-HETE) was rather enhanced. The conversion of exogenously added [14C]AA to [14C]TXB2 and [14C]HHT in washed platelets was dose-dependently reduced by the addition of TCA, while that to [14C]12-HETE was increased. Similar observations were obtained when linolenic acid (LNA; C18:3, omega-3) was used. These results suggest that TCA may decrease TXA2 formation in platelets, probably due to the inhibition of cyclooxygenase pathway, and thereby reduce platelet aggregation.  相似文献   

6.
Human platelets possess active lipoxygenase and cyclooxygenase which convert arachidonic acid to (12S)-12-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12-HPETE) plus (12S)-12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) and thromboxane B2 plus 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT), respectively. When platelet homogenates were incubated with arachidonate, there was a rapid consumption of platelet tocopherol. Time course analysis revealed that within 0.5 min, over half of arachidonate and tocopherol were metabolized. Mass formation of 12-HPETE and 12-HETE or thromboxane B2 and HHT exceeded that of the mass of tocopherol oxidized. Preincubation with the lipoxygenase inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) completely abolished this arachidonate-induced tocopherol oxidation whereas cyclooxygenase inhibitors (indomethacin and aspirin) further potentiated tocopherol oxidation, indicating that this oxidation is closely linked with platelet 12-lipoxygenase activity. Incubation with lipoxygenase metabolites of arachidonic acid showed that only 12-HPETE caused a rapid tocopherol oxidation which was followed by a gradual tocopherol regeneration. By using nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor which is also a strong reductant, over 60% of the arachidonate-induced oxidized tocopherol was regenerated. Tocopherol regeneration declined with increasing oxidation time induced by arachidonate, and after 30-60 min virtually no regeneration could be observed, suggesting that the precursor molecule was unstable. We postulate that the precursor molecule is the tocopheroxyl radical. In the presence of ETYA, a lipoxygenase inhibitor without antioxidant properties, either ascorbate or GSH provided significant tocopherol regeneration. Kinetic studies showed that tocopherol regeneration after the addition of ascorbate was essentially completed by 1 min. By contrast, GSH addition caused a steady increase in tocopherol which peaked after 10 min of its addition. To determine whether this rapid regeneration is chemical or enzymic, regeneration was studied in the presence of chloroform and methanol. Comparison of various reductants in this denaturing condition for enzymes showed that ascorbate and NDGA afforded significant regeneration whereas GSH was ineffective, indicating that there are distinct enzymic and non-enzymic mechanisms for tocopherol regeneration. This study provides direct evidence from mass analysis that tocopherol can be regenerated in human cell homogenates. This finding implies that maintenance of membrane tocopherol status may be an essential function of ascorbate and GSH which operate in concert to ensure maximum membrane protection against oxidative damage.  相似文献   

7.
Lipid hydroperoxides have been reported to regulate cell function and eicosanoid formation. The aim of the present study was to determine the effect of 12(S)-hydroperoxy-eicosatetraenoic acid [12(S)-HPETE], the platelet 12-lipoxygenase-derived hydroperoxide of arachidonic acid (AA), on the availability of nonesterified AA, which represents a rate-limiting step in the biosynthesis of eicosanoids. The coincubation of human platelets with concentrations of 12(S)-HPETE below 50 nM and subthreshold concentrations (STC) of collagen (less than 0.24 microg/ml) significantly enhanced platelet aggregation and the formation of thromboxane B(2), the stable catabolite of the potent aggregating agent thromboxane A(2). In addition, the nonesterified endogenous AA concentration increased by 3-fold. Arachidonoyl-containing molecular species concentrations of 1,2-diacyl-glycero-3-phosphocholine, 1-alkyl-2-acyl-glycero-3-phosphocholine, and 1-alkenyl-2-acyl-glycero-3-phosphoethanolamine decreased specifically in response to 12(S)-HPETE, whereas no significant changes were observed within 1,2-diacyl-glycero-3-phosphoethanolamine and 1,2-diacyl-glycero-3-phosphoinositol molecular species. The 12(S)-HPETE-induced increase in nonesterified AA was fully prevented by arachidonoyl trifluoromethyl ketone, an inhibitor of cytosolic phospholipase A(2) (cPLA(2)), and cPLA(2) was translocated to membranes and phosphorylated in platelets incubated with 12(S)-HPETE.In conclusion, these results indicate that nanomolar concentrations of 12(S)-HPETE could play a significant role in controlling the level of endogenous AA and the formation of thromboxane, thereby potentiating platelet function.  相似文献   

8.
Analysis of arachidonic acid metabolites in human platelets by reverse-phase HPLC with radioactivity and UV detection revealed, besides Thromboxane B2 (TXB2), 12-hydroxy-heptadecatrienoic acid (HHT) and 12-hydroxy-eicosatetraenoic acid (12-HETE) previously described, two peaks of unidentified material absorbing at 280 nm. This material was purified by straight-phase HPLC and characterized by UV spectroscopy and gas chromatography-mass spectrometry. Three carbonyl compounds were identified: 12-keto-5,8,10,14-eicosatetraenoic acid and two geometric isomers of 12-oxo-5,8,10-dodecatrienoic acid. In a 5 min incubation at 37 degrees C in the presence of 9 microM arachidonic acid, the yield was of 0.5 to 1% of added arachidonic acid for the ketonic compound and of 4 to 7% for the sum of the two isomeric fatty acid aldehydes in comparison to 10 to 13% and 25 to 28% for TXB2 and 12-HETE, respectively. Because the three compounds carry a carbonyl group at position 12, their relationship with the 12-lipoxygenase pathway was investigated. It was found that the three compounds were formed when 12-hydroperoxy-eicosatetraenoic acid (12-HPETE) was incubated with intact or heat denaturated platelets or hemoproteins, strongly suggesting that these carbonyl compounds are products of a heme-catalysed transformation of 12-HPETE.  相似文献   

9.
The metabolism of arachidonic acid (AA) was investigated in purified guinea pig alveolar eosinophils and macrophages. Alveolar eosinophils produced 12S-hydroxy-5,8,10-heptadecatraenoic acid (HHT) and small amounts only of 5-lipoxygenase products when stimulated by AA (10 microM) or ionophore A23187 (2 microM). However, when the cell suspensions were stimulated with both AA and A23187, the cells produced HHT, leukotriene (LT) B4, and 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, whereas LTC4, D4, and E4 were undetectable. Similarly, alveolar macrophages stimulated with A23187 produced HHT, 5-hydroxy-6,8,11,14-eicosatetraenoic acid, and LTB4 but no peptido-leukotrienes. When LTA4 was added to suspensions of eosinophils and macrophages, only LTB4 was formed, whereas in parallel experiments, intact human platelets incubated with LTA4 produced LTC4. These data suggest that guinea pig alveolar eosinophils and macrophages contain both cyclooxygenase and 5-lipoxygenase, but do not produce peptido-leukotrienes, probably lacking LTA4 glutathione transferase activity. These studies demonstrate that guinea pig eosinophils differ from eosinophils of other animal species which have been shown to be major sources of leukotriene C4. The present data imply that eosinophils and macrophages are not the source of peptido-leukotrienes in anaphylactic guinea pig lungs.  相似文献   

10.
Arachidonic acid is metabolized via the cyclooxygenase pathway to several potent compounds that regulate important physiological functions in the cardiovascular system. The proaggregatory and vasoconstrictive thromboxane A2 produced by platelets is opposed in vivo by the antiaggregatory and vasodilating activity of prostacyclin (prostaglandin I2) synthesized by blood vessels. Furthermore, arachidonic acid is metabolized by lipoxygenase enzymes to different isomeric hydroxyeicosatetraenoic acids (HETE's). This metabolic pathway of arachidonic acid was studied in detail in endothelial cells obtained from bovine aortae. It was found that this tissue produced 6-ketoprostaglandin F1 alpha as a major cyclooxygenase metabolite of arachidonic acid, whereas prostaglandins F2 alpha and E2 were synthesized only in small amounts. The monohydroxy fatty acids formed were identified as 15-HETE, 5-HETE, 11-HETE and 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT). The latter two compounds were produced by cyclooxygenase activity. Nordihydroguaiaretic acid (NDGA), a rather selective lipoxygenase inhibitor and antioxidant blocked the synthesis of 15- and 5-HETE. It also strongly stimulated the cyclooxygenase pathway, and particularly the formation of prostacyclin. This could indicate that NDGA might exert its effect on prostacyclin levels by preventing the synthesis of 15-hydroperoxyeicosatetraenoic acid (15-HPETE), a potent inhibitor of prostacyclin synthetase. 15-HPETE could therefore act as an endogenous inhibitor of prostacyclin production in the vessel wall.  相似文献   

11.
In the present study, the effects of hypochlorous acid (HOCl), monochloramine (NH(2)Cl), glutamine-chloramine (Glu-Cl) and taurine-chloramine (Tau-Cl) on the formation of 12-lipoxygenase (LOX) metabolite, 12-HETE, and cyclooxygenase (COX) metabolites, TXB(2), and 12-HHT, from exogenous arachidonic acid (AA) in rat platelets were examined. Rat platelets (4x10(8)/ml) were preincubated with drugs for 5min at 37 degrees C prior to the incubation with AA (40microM) for 2min at 37 degrees C. HOCl (50-250microM) showed an inhibition on the formation of LOX metabolite (12-HETE, 5-67% inhibition) and COX metabolites (TXB(2), 33-73% inhibition; 12-HHT, 27-74% inhibition). Although Tau-Cl and Glu-Cl up to 100microM were without effect on the formation of 12-HETE, TXB(2) and 12-HTT, NH(2)Cl showed a strong inhibition on the formation of all three metabolites (10-100microM NH(2)Cl, 12-HETE, 21-92% inhibition; TXB(2), 58-94% inhibition; 12-HHT, 36-92% inhibition). Methionine reversed a reduction of formation of LOX and COX metabolites induced by NH(2)Cl, and taurine restoring that induced by both NH(2)Cl and HOCl. These results suggest that NH(2)Cl is a more potent inhibitor of COX and LOX pathways in platelets than HOCl, and taurine and methionine can be modulators of NH(2)Cl-induced alterations in the COX and LOX pathways in vivo.  相似文献   

12.
The phenazine derivative, 1-hydroxyphenazine (OHP), is produced in vivo by Pseudomonas aeruginosa, an organism that colonises the airways of patients with cystic fibrosis. While known to inhibit leukotriene production by human neutrophils, the effects of OHP on cyclooxygenase pathways have not previously been reported. We used [3H]arachidonic acid (AA) under conditions of concurrent labelling-stimulation or pre-labelling for one hour followed by stimulation to determine the effects of OHP on the production of cyclooxygenase metabolites by human platelets stimulated with the calcium ionophore, A23187. Thromboxane B2 (TxB2) and 12-hydroxyheptadecatrienoic acid (HHT) production was inhibited in a dose-dependent manner by OHP using either pre-labelled or concurrently labelled platelets. However, production of 12-hydroxyeicosatetraenoic acid (12-HETE) was not diminished. Determination of the amount of total free label (AA + non-esterified AA metabolites) after stimulation of pre-labelled platelets indicated a dose-dependent inhibition of the release of AA from phospholipid by OHP. This was reflected in a corresponding increase in phospholipid AA content. These data indicate that phenazine derivatives of bacterial origin exhibit complex interactions with pathways of arachidonic acid metabolism in host cells. These effects may prove to be of pharmacological importance.  相似文献   

13.
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response.  相似文献   

14.
The covalent modification of proteins by metabolites of arachidonic acid (AA) was investigated in human platelets. Following incubation of washed human platelets with radiolabeled AA, ethanol precipitation of the proteins, and lipid extraction by organic solvents, a small fraction of the radioactivity added (0.3%) was tightly bound to the protein pellet. A dozen labeled protein bands were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Exhaustive hydrolysis of platelet proteins by proteases released an amphipathic radiolabeled material which had a chromatographic behavior similar to that of a known peptidolipid, leukotriene C4. These findings suggest a covalent nature for the observed binding. This binding was specific for AA since palmitate, myristate, or linoleate did not bind to a significant extent. It involved products of both cyclooxygenase and lipoxygenase pathways: it was indeed inhibited to a greater extent by eicosatetraynoic acid than by indomethacin. The protein-associated radioactivity was increased by the thromboxane synthase inhibitor dazoxiben. Indomethacin completely abolished this increase in binding, which could not be reproduced by exogenous prostaglandin (PG) E2, F2 alpha, or D2, and might thus involve PGG2 and/or PGH2. Diamide, an agent known to inhibit the reduction of 12-hydroperoxyeicosatetraenoic acid in platelets, produced an increase of the covalent binding, which was abolished by eicosatetraynoic acid but not by indomethacin: this suggests that the lipoxygenase product bound was 12-hydroperoxyeicosatetraenoic acid or a by-product. Dazoxiben and diamide produced distinct patterns of protein labeling after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One labeled band had a Mr of 70,000 as the PGH synthase monomer. Addition of AA at 17 microM enhanced the labeling of this band, while 100 microM was inhibitory. Labeling of this band was also induced by thrombin in prelabeled platelets. Two monoclonal antibodies against PGH synthase caused immune precipitation of a 70-kDa labeled protein in homogenates of [3H]AA-labeled platelets. PGH synthase, purified from ram seminal vesicles, was covalently modified after incubation with [3H]AA: this labeling was almost completely abolished by indomethacin. As much as 40% of platelet PGH synthase was covalently modified after incubation with 17 microM AA. It can be concluded that in intact platelets PGH synthase is covalently modified by an eicosanoid following incubation with exogenous AA or after AA mobilization from phospholipids by thrombin.  相似文献   

15.
Washed platelets of patients with familial Mediterranean fever (FMF) were incubated with I-14C arachidonic acid (AA). Only 10% of AA were transformed into thromboxane A2, 12(S)-12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-HETE) and 12(S)-12-hydroxy-5Z,8Z,10E-heptadecatrienoic acid (HHT), which strongly indicates the suppression of platelet lipoxygenase and cyclooxygenase or the deficit in these enzymes in FMF. However, there were no noticeable alterations in AA platelet metabolism during attacks of fever and immediately after hyperbaric oxygenation used to relieve pain and fever. The data obtained suggest that arachidonic acid metabolism plays an important role in the pathogenesis of FMF.  相似文献   

16.
Selective removal of intracellular glutathione (GSH) and inhibition of the GSH-dependent peroxidase (GSH-Px) by 1-chloro-2, 4-dinitrobenzene (CDNB) was used to evaluate the role of GSH and GSH-Px in arachidonic acid (AA) metabolism in human platelets. Although total conversion of AA through the lipoxygenase pathway is lowered by GSH depletion, significant 12-HETE formation was observed suggesting that GSH and GSH-Px are not required for the generation of 12-HETE in human platelets. Prolonged treatment of platelets with CDNB (2 h) completely destroyed GSH-Px activity creating a model in which the effects of GSH alone could be determined. Platelet homogenates replenished with GSH, but lacking GSH-Px activity converted significantly higher amounts of AA to 12-HPETE and 12-HETE than control. Platelet cytosolic metabolism of 15-HPETE to 15-HETE decreased after CDNB, while the membrane metabolism remained similar to control due to high GSH-independent peroxidase activity associated with the membranes. These results indicate that GSH and GSH-Px function to enhance lipoxygenase activity, rather than catalyse the reduction of 12-HPETE to 12-HETE.  相似文献   

17.
Selective removal of intracellular glutathione (GSH) and inhibition of the GSH-dependent peroxidase (GSH-Px) by 1-chloro-2,4-dinitrobenzene (CDNB) was used to evaluate the role of GSH and GSH-Px in arachidonic acid (AA) metabolism in human platelets. Although total conversion of AA through the lipoxygenase pathway is lowered by GSH depletion, significant 12-HETE formation was observed suggesting that GSH and GSH-Px are not required for the generation of 12-HETE in human platelets. Prolonged treatment of platelets with CDNB (2 h) completely destroyed GSH-Px activity creating a model in which the effects of GSH alone could be determined. Platelet homogenates replenished with GSH, but lacking GSH-Px activity converted significantly higher amounts of AA to 12-HPETE and 12-HETE than control. Platelet cytosolic metabolism of 15-HPETE to 15-HETE decreased after CDNB, while the membrane metabolism remained similar to control due to high GSH-independent peroxidase activity associated with the membranes. These results indicate that GSH and GSH-Px function to enhance lipoxygenase activity, rather than catalyse the reduction of 12-HPETE to 12-HETE.  相似文献   

18.
Previous studies in a line of rat basophilic leukemia (RBL 1) cells have indicated that the slow reacting substance (SRS) made during stimulation with the divalent cation ionophore, A23187, is derived from arachidonic acid (AA). In the present report, various inhibitors of AA metabolism were compared with regard to their effects on SRS formation and incorporation of radioactivity from [1-14C]-AA into known metabolites of the lipoxygenase and cyclooxygenase pathways. An apparently close parallel between lipoxygenase product formation and SRS synthesis is demonstrated. In addition, exogenous 5-hydroperoxy-eicosatetraenoic acid (5-HPETE) has been shown to markedly enhance SRS synthesis, even when A23187 is absent. The data provide very strong evidence that SRS is produced through the lipoxygenase pathway.  相似文献   

19.
An ethereal extract of omum (Trachyspermum ammi; Hindustani: ajwan)--a frequently consumed spice--was found to inhibit platelet aggregation induced by arachidonic acid (AA), epinephrine and collagen; in this respect it was most effective against AA-induced aggregation. Inhibition of aggregation by omum could be explained by its effect on platelet thromboxane production as suggested by the following experimental observation. (i) Omum reduced TxB2 formation in intact platelet preparations from added arachidonate, and (ii) it reduced the formation of TxB2 from AA-labelled platelets after stimulation with Ca2+-ionophore A23187 by a direct action on cyclooxygenase as it did not affect the release of AA from labelled platelets. An increased formation of lipoxygenase-derived products from exogenous AA in omum-treated platelets was apparently due to redirection of AA from cyclooxygenase to the lipoxygenase pathway.  相似文献   

20.
Effects of stilbene derivatives on arachidonate metabolism in leukocytes   总被引:1,自引:0,他引:1  
The effects of various alpha-phenylcinnamic acid derivatives (i.e., alpha-(3,4-dihydroxyphenyl)cinnamic acid, alpha-(3,4-dihydroxyphenyl)-3-hydroxycinnamic acid, alpha-(3,4-dihydroxyphenyl)-4-hydroxycinnamic acid and alpha-(3,4-dihydroxyphenyl)-3, 4-dihydroxycinnamic acid) synthesized from 3,4-dihydroxyphenyl acetic acid and hydroxy-benzaldehyde, and 3,3',4-trihydroxystilbene obtained by decarboxylation of alpha-(3,4-dihydroxyphenyl)-3-hydroxycinnamic acid on rat peritoneal polymorphonuclear leukocyte lipoxygenase and cyclooxygenase activities were studied. 3,3',4-Trihydroxystilbene was found to inhibit the 5-lipoxygenase product, 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HETE), and cyclooxygenase products, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and thromboxane B2; its concentrations for 50% inhibition (IC50) were 0.885 +/- 0.016 microM for the leukocyte lipoxygenase product, 5-HETE, 7.70 +/- 0.104 microM for the formations of HHT and 7.96 +/- 0.143 microM for the formation of thromboxane B2. Alpha-(3,4-Dihydroxyphenyl)cinnamic acid, alpha-(3,4-dihydroxyphenyl)-3-hydroxycinnamic acid and alpha-(3,4-dihydroxyphenyl)-3,4-dihydroxycinnamic acid also inhibited the formations of 5-HETE, HHT and thromboxane B2, although less strongly. Their IC50 values were, respectively, 91.3 +/- 3.62 microM, 947.5 +/- 28.7 microM, 453.3 +/- 229.3 microM and 148.8 +/- 50.6 microM for the formation of 5-HETE, 894.0 +/- 5.57 microM, 792.5 +/- 15.9 microM, greater than 1000 microM and 925.0 +/- 7.64 microM for the formation of HHT and 941.0 +/- 18.0 microM, 825 +/- 14.4 microM, greater than 1000 microM and 932.7 +/- 3.93 microM for the formation of thromboxane B2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号