首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The standard procedure outlined by the United States Environmental Protection Agency (US EPA) in Method 1623 for analyzingGiardia lamblia cysts andCryptosporidium parvum oocysts in water samples consists of filtration, elution, centrifugal concentration, immunomagnetic separation (IMS), and immunofluorescence assay (IFA) followed by microscopic examination. In this study, the extent of (oo)cyst loss in each step of this procedure was evaluated by comparing recovery yields in segmented analyses: (i) IMS+IFA, (ii) concentration +IMS+IFA, and (iii) filtration/elution + concentration +IMS+IFA. The complete (oo)cyst recovery by the full procedure was 52–57%. The (oo)cyst loss in the IMS step was only 0–6%, implying that IMS is a fairly reliable method for (oo)cyst purification. Centrifugal concentration of the eluted sample and pellet collection before IMS resulted in a loss of 8–14% of the (oo)cysts. The largest (oo)cyst loss occurred in the elution step, with 68–71% of the total loss. The permeated loss of (oo)cysts was negligible during filtration of the water sample with a 1.0-μm pore polyethersulfone (PES) capsule. These results demonstrated that the largest fraction of (oo)cyst loss in this procedure occurred due to poor elution from the filter matrix. Improvements in the elution methodology are therefore required to enhance the overall recovery yield and the reliability of the detection of these parasitic protozoa.  相似文献   

2.
Immunomagnetic separation (IMS) procedures for the simultaneous isolation of Cryptosporidium oocysts and Giardia cysts have recently become available. We validated Dynal's GC-Combo IMS kit using source water at three turbidity levels (5000, 500 and 50 nephelometric turbidity units [ntu]) obtained from different geographical locations and spiked with approximately 9--11 (oo)cysts per ml. Mean recoveries of Cryptosporidium oocysts and Giardia cysts in deionized water were 62% and 69%, respectively. In turbid water matrices, mean recoveries of Cryptosporidium oocysts were between 55.9% and 83.1% while mean recoveries of cysts were between 61.1% and 89.6%. Marginally higher recoveries of the heat inactivated (oo)cysts were observed (119.4% Cryptosporidium oocysts and 90.9% Giardia cysts) in deionized water when compared with recoveries of viable (oo)cysts (69.7% Cryptosporidium oocysts and 79% Giardia cysts). Age of (oo)cysts on recoveries using the GC-Combo IMS kit demonstrated no effects up to 20 months old. Recovery of Giardia cysts was consistent for isolates aged up to 8 months (81.4%), however, a significant reduction in recoveries was noted at 20 months age. Recoveries of low levels (5 and 10 (oo)cysts) of Cryptosporidium oocysts and Giardia cysts in deionized water using IMS ranged from 51.3% to 78% and from 47.6% to 90.0%, respectively. Results of this study indicate that Dynal's GC-Combo IMS kit is an efficient technique to separate Cryptosporidium/Giardia from turbid matrices and yields consistent, reproducible recoveries. The use of fresh (recently voided and purified) (oo)cysts, aged (oo)cysts, viable and heat-inactivated (oo)cysts indicated that these parameters do not influence IMS performance.  相似文献   

3.
Previously, the cellulose acetate membrane filter dissolution method was reported to yield Cryptosporidium parvum oocyst recoveries of 70.5%, with recovered oocysts retaining their infectivity. In contrast, high spike doses (approximately 1 x 10(5) Cryptosporidium parvum oocysts and Giardia intestinalis cysts) yielded recoveries ranging from 0.4% to 83.9%, and 3.2% to 90.3%, respectively, in this study. Recoveries with low spike doses (approximately 100 (oo)cysts) continued to demonstrate high variability also. Efforts to optimize the method included increased centrifugation speeds, suspension of the final concentrate in deionized water for organism detection on well slides, and analysis of the entire concentrate. A comparison of two monoclonal antibodies was also conducted to identify potential differences between antibodies in detection of organisms. Archived source and finished water samples were spiked, yielding variable recoveries of C. parvum oocysts (11.8% to 71.4%) and G. intestinalis cysts (7.4% to 42.3%). Effects of organic solvents used in the membrane dissolution procedure on the viability of recovered (oo)cysts was determined using a fluorogenic vital dyes assay in conjunction with (oo)cyst morphology, which indicated > 99% inactivation. These data indicate that the membrane dissolution procedure yields poor and highly variable (oo)cyst recoveries, and also renders the majority of recovered organisms non-viable.  相似文献   

4.
U.S. Environmental Protection Agency (EPA) Method 1623 is designed to detect and determine concentrations of Cryptosporidium oocysts and Giardia cysts in water through concentration, immuno-magnetic separation (IMS), and immuno-fluorescence assay with microscopic examination. A seasonal interference with the method was observed in some municipal source waters collected from reservoirs and as reported to Shaw Environmental, Inc. in the summers of 2005, 2006, and 2007. This interference, which was not confined to a single region of the nation, caused clumping of the IMS beads during the acid dissociation of the IMS procedure in Method 1623. This effect lowered method recoveries for both Cryptosporidium and Giardia; however, the effect was more pronounced for Giardia. A heat dissociation technique (Ware et al., (2003) J. Microbiol. Methods 55, 575-583) was shown to be a viable option for samples which demonstrate the clumping matrix effect and improved Giardia recoveries in partially clumped samples. The heat dissociation application holds promise for fully clumped samples and warrants further investigation.  相似文献   

5.
6.
This correspondence describes the successful development of methods for the recovery, isolation and detection of Cryptosporidium oocysts in wastewater and biosolids. Wastewater from one plant was used to optimize methods in raw influent as well as primary, secondary and tertiary effluents. Raw influents and primary effluents were concentrated using centrifugation followed by isolation of Cryptosporidium oocysts using immunomagnetic separation (IMS) and detection of recovered organisms using epifluorescence microscopy. Mean oocyst recovery in raw influent was 29.2+/-12.8% and 38.8+/-27.9% in primary effluent at three sample volumes tested. Secondary and tertiary effluents were analyzed using a modified Method 1622 resulting in mean oocyst recoveries of 53.0+/-19.2% and 67.8+/-4.4%, respectively. In biosolids with approximately 10% total solids, mean oocyst recovery was 43.9+/-10.1% using IMS with a 5 g (wet weight) sample size. Due to the variability in these matrices, an internal microbiological standard was incorporated to serve as a tool for method performance.  相似文献   

7.
The sensitivity and specificity of current Giardia cyst detection methods for foods are largely determined by the effectiveness of the elution, separation, and concentration methods used. The aim of these methods is to produce a final suspension with an adequate concentration of Giardia cysts for detection and a low concentration of interfering food debris. In the present study, a microfluidic device, which makes use of inertial separation, was designed and fabricated for the separation of Giardia cysts. A cyclical pumping platform and protocol was developed to concentrate 10-ml suspensions down to less than 1 ml. Tests involving Giardia duodenalis cysts and 1.90-μm microbeads in pure suspensions demonstrated the specificity of the microfluidic chip for cysts over smaller nonspecific particles. As the suspension cycled through the chip, a large number of beads were removed (70%) and the majority of the cysts were concentrated (82%). Subsequently, the microfluidic inertial separation chip was integrated into a method for the detection of G. duodenalis cysts from lettuce samples. The method greatly reduced the concentration of background debris in the final suspensions (10-fold reduction) in comparison to that obtained by a conventional method. The method also recovered an average of 68.4% of cysts from 25-g lettuce samples and had a limit of detection (LOD) of 38 cysts. While the recovery of cysts by inertial separation was slightly lower, and the LOD slightly higher, than with the conventional method, the sample analysis time was greatly reduced, as there were far fewer background food particles interfering with the detection of cysts by immunofluorescence microscopy.  相似文献   

8.
Microsporidia are obligate intracellular pathogens capable of infecting humans. There is credible evidence to suggest that microsporidial infections may be transmitted through consumption of spores in contaminated water; however, methods to detect this pathogen have not been standardized and microsporidia occurrence studies have not been conducted. Concentration of spores by continuous flow centrifugation (CFC), purification using immunomagnetic separation (IMS), and detection by either microscopy or real-time polymerase chain reaction (PCR) were evaluated for detection of Encephalitozoon intestinalis spores in seeded water samples. Recovery efficiency of CFC using microscopic detection ranged from 38.7-75.5% in filtered tap water. Using an indirect IMS method, 78.8-90.2% of seeded spores were recovered in ultrapure water (18 M Omega); however, the lack of a specific monoclonal antibody and the presence of other particulates interfered with the IMS assay in some turbid samples. Despite low recovery efficiencies and the detectable presence of PCR inhibitors in each of the samples, a combination of CFC concentration, indirect IMS, and real-time PCR produced a positive test result in six of ten natural water samples (turbidity 0.1-28.9 NTU) at a seeding level of 50 spores/L.  相似文献   

9.
The distribution of Escherichia coli O157 in bovine feces was examined by testing multiple samples from fecal pats and determining the density of E. coli O157 in immunomagnetic separation (IMS)-positive fecal samples. The density of E. coli O157 in bovine feces was highly variable, differing by as much as 76,800 CFU g(-1) between samples from the same fecal pat. The density in most positive samples was <100 CFU g(-1), the limit of reliable detection by IMS. Testing only one 1-g sample of feces per pat with IMS may result in a sensitivity of detection as low as 20 to 50%. It is therefore probable that most surveys have greatly underestimated the prevalence of E. coli O157 shedding in cattle and the proportion of farms with shedding cattle. The sensitivity of the detection of E. coli O157 in bovine feces can be as much as doubled by testing two 1-g samples per pat rather than one 1-g sample.  相似文献   

10.
We developed a rapid detection method for Legionella pneumophila (Lp) by filtration, immunomagnetic separation, double fluorescent staining, and flow cytometry (IMS‐FCM method). The method requires 120 min and can discriminate ‘viable’ and ‘membrane‐damaged’ cells. The recovery is over 85% of spiked Lp SG 1 cells in 1 l of tap water and detection limits are around 50 and 15 cells per litre for total and viable Lp, respectively. The method was compared using water samples from house installations in a blind study with three environmental laboratories performing the ISO 11731 plating method. In 53% of the water samples from different taps and showers significantly higher concentrations of Lp were detected by flow cytometry. No correlation to the plate culture method was found. Since also ‘viable but not culturable’ (VNBC) cells are detected by our method, this result was expected. The IMS‐FCM method is limited by the specificity of the used antibodies; in the presented case they target Lp serogroups 1–12. This and the fact that no Lp‐containing amoebae are detected may explain why in 21% of all samples higher counts were observed using the plate culture method. Though the IMS‐FCM method is not yet fit to completely displace the established plating method (ISO 11731) for routine Lp monitoring, it has major advantages to plating and can quickly provide important insights into the ecology of this pathogen in water distribution systems.  相似文献   

11.
In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted.  相似文献   

12.
An antibody-magnetite method was developed in order to selectively concentrate Giardia cysts from water samples. The indirect technique employed a mouse immunoglobulin G anti-Giardia antibody as a primary antibody and an anti-mouse immunoglobulin G antibody-coated magnetite particle as a secondary labeling reagent. The magnetically labeled cysts were then concentrated by high-gradient magnetic separation. Ninety percent of the seeded cysts were recovered from buffer when this method was employed. An average of 82% of the seeded cysts were recovered from water samples with various turbidities. Significantly higher cyst recoveries were obtained from water samples with turbidities below 600 nephelometric turbidity units.  相似文献   

13.
In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted.  相似文献   

14.
U.S. Environmental Protection Agency (EPA) Method 1623 is designed to detect and determine concentrations of Cryptosporidium oocysts and Giardia cysts in water through concentration, immuno-magnetic separation (IMS), and immuno-fluorescence assay with microscopic examination. A seasonal interference with the method was observed in some municipal source waters collected from reservoirs and as reported to Shaw Environmental, Inc. in the summers of 2005, 2006, and 2007. This interference, which was not confined to a single region of the nation, caused clumping of the IMS beads during the acid dissociation of the IMS procedure in Method 1623. This effect lowered method recoveries for both Cryptosporidium and Giardia; however, the effect was more pronounced for Giardia. A heat dissociation technique (Ware et al., (2003) J. Microbiol. Methods 55, 575–583) was shown to be a viable option for samples which demonstrate the clumping matrix effect and improved Giardia recoveries in partially clumped samples. The heat dissociation application holds promise for fully clumped samples and warrants further investigation.  相似文献   

15.
The aim of this study was to determine the prevalence of Listeria monocytogenes in packaged fresh ground turkey in Turkey using immunomagnetic separation (IMS) as a selective enrichment step in method and polymerase chain reaction (PCR). A total of 180 ground turkey samples were collected during a 1-year period. Thirty-two (17.7%) of the samples contained L. monocytogenes, 24 (13.3%) contained Listeria innocua, 7 (3.8%) had Listeria ivanovii and 5 (2.7%) had Listeria seeligeri by means of IMS-based cultivation method. A PCR assay was performed, based on hlyA gene-specific primers. In all L. monocytogenes isolates, hlyA gene was confirmed, indicating that the correlation between IMS-based cultivation and PCR methods was 100%. The results suggest that the prevalence of L. monocytogenes in ground turkey is relatively high in Turkey and that ground turkey should be produced under appropriate hygienic and technological conditions for the prevention of public health hazards.

PRACTICAL APPLICATIONS


Using fast and reliable methods to detect and identify foodborne pathogenic bacteria, including Listeria monocytogenes , is important to detect the risk of contaminated product and protect public health. In some ways it is time-consuming to isolate and identify the pathogenic microorganisms from food products using conventional techniques. Different methods or techniques can be used both for redounding the isolation chance and to gain time for this purpose. Immunomagnetic separation (IMS) and polymerase chain reaction (PCR) techniques are effective and rapid methods for separation, detection and confirmation of Listeria spp. from foods. In this study rapid, specific and sensitive IMS method was used to determine the prevalence of L. monocytogenes in fresh ground turkey and PCR technique was used for the verification of the L. monocytogenes isolates.  相似文献   

16.
Toxplasma is a protozoan parasite, which forms persistent cysts in tissues of chronically infected animals and humans. Cysts can reactivate leading to severe pathologies. They also contribute to the transmission of Toxoplasma infection in humans by ingestion of undercooked meat. Classically, the quantification of cyst burden in tissues uses microscopy methods, which are laborious and time consuming. Here, we have developed automated protocols to quantify cysts, based on flow cytometry or high-throughput microscopy. Brains of rodents infected with cysts of Prugniaud strain were incubated with the FITC-Dolichos biflorus lectin and analyzed by flow cytometry and high-throughput epifluorescence microscopy. The comparison of cyst counts by manual epifluorescence microscopy to flow cytometry or to high-throughput epifluorescence microscopy revealed a good correlation (r = 0.934, r = 0.993, P < 0.001 respectively). High-throughput epifluorescence microscopy was found to be more specific and sensitive than flow cytometry and easier to use for large series of samples. This reliable and easy protocol allow the specific detection of Toxoplasma cysts in brain, even at low concentrations; it could be a new way to detect them in water and in contaminate food.  相似文献   

17.
Hemorrhagic Escherichia coli O157:H7 strains and other virulent enteric pathogens can pose a serious health threat in tainted meats, poultry, and even drinking water. Traditional culture-based methods for assay of enteric pathogens in foods and water sources are relatively slow, and results can be ambiguous. Immunomagnetic separation (IMS) and detection methods have been investigated and appear promising for rapid bacterial assay of foods and environmental samples. In this work, a commercial sensor which combines IMS with electrochemiluminescence (ECL) detection is evaluated for detection of E. coli O157 and Salmonella typhimurium in foods and fomites. Results indicate that detection limits are in the range of 100 to 1,000 bacteria per ml in pristine buffer for E. coli O157 and S. typhimurium, respectively, or 1,000 to 2,000 bacteria per ml in food samples (depending on the sample) and that total processing and assay time is rapid (< 1 h) even in food samples. An immunologic "hook" or high-antigen-concentration prozone effect was observed above 10(4) and 10(5) bacteria per ml for E. coli O157 and S. typhimurium, respectively. IMS was accomplished in milk, juices, serum, supernatant fluids from ground beef, finely minced chicken, and fish suspensions as well as several freshwater sources and followed by ECL assay. Some samples, especially fish, gave unexpectedly high background ECL. Conversely, low ECL intensity was observed in nonfat and 2% fat milk samples, which appeared to be related to binding or entrapment of the antibody-coated magnetic beads by particulates in the milk, as revealed by microscopy. Results of this evaluation suggest the feasibility of immunomagnetic-ECL methodology for rapid, sensitive, and facile preliminary screening of various foods and fomites for the presence of virulent enteric pathogens.  相似文献   

18.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.  相似文献   

19.
AIMS: To develop rapid means of distinguishing between cysts and trophozoites of the opportunistic pathogen, Acanthamoeba castellanii, the causative agent of keratitis. METHODS AND RESULTS: Fluorescence of Congo Red, Calcoflor White was specific for the endocyst wall; trophozoites did not become fluorescent. The anionic oxonol dye, DiBAC4(3), did not penetrate the cytoplasmic membrane after short-term (<5 min) exposure, whereas cysts are permeable and become fluorescent. Confocal scanning laser microscopy confirmed these properties and large populations of organisms were analysed by flow cytometry. CONCLUSION: These data provide a rapid alternative to traditional haemocytometer or plate counts for discrimination of trophozoites from cysts. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid and precise determination of the growth cycle of a dangerous ocular pathogen.  相似文献   

20.
Water samples, taken from the intake and rapid filter system of a water purification plant, were analyzed using an immunofluorescence antibody method for detecting the presence of Giardia cysts and Cryptosporidium oocysts. Giardia cysts and Cryptosporidium oocysts were found in the intake water from zero to 38.7 cysts/100 l and 1.7–50.5 oocysts/100 l with averages of 9.6 cysts/100 l and 19.4 oocysts/100 l. Giardia cysts and Cryptosporidium oocysts were also detected in the samples taken from the rapid filtration unit with mean concentrations of zero to 2.3 cysts/100 l and 0–2.5 oocysts/100 l, respectively. The efficacy of the rapid filter in suspended material and (oo)cyst removal was significant. The removal late was 56–97% for suspended material and 69–100% for the (oo)cysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号