共查询到20条相似文献,搜索用时 15 毫秒
1.
Flagellar assembly proceeds in a sequential manner, beginning at the base and concluding with the filament. A critical aspect of assembly is that gene expression is coupled to assembly. When cells transition from a nonflagellated to a flagellated state, gene expression is sequential, reflecting the manner in which the flagellum is made. A key mechanism for establishing this temporal hierarchy is the sigma(28)-FlgM checkpoint, which couples the expression of late flagellar (P(class3)) genes to the completion of the hook-basal body. In this work, we investigated the role of FliZ in coupling middle flagellar (P(class2)) gene expression to assembly in Salmonella enterica serovar Typhimurium. We demonstrate that FliZ is an FlhD(4)C(2)-dependent activator of P(class2)/middle gene expression. Our results suggest that FliZ regulates the concentration of FlhD(4)C(2) posttranslationally. We also demonstrate that FliZ functions independently of the flagellum-specific sigma factor sigma(28) and the filament-cap chaperone/FlhD(4)C(2) inhibitor FliT. Furthermore, we show that the previously described ability of sigma(28) to activate P(class2)/middle gene expression is, in fact, due to FliZ, as both are expressed from the same overlapping P(class2) and P(class3) promoters at the fliAZY locus. We conclude by discussing the role of FliZ regulation with respect to flagellar biosynthesis based on our characterization of gene expression and FliZ's role in swimming and swarming motility. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
Enteroaggregative Escherichia coli (EAEC) is increasingly recognized as a diarrhoeal pathogen in developing and industrialized countries. Most EAEC virulence factors thus far described are encoded on virulence plasmid pAA, yet recent completion of the EAEC genome has suggested the presence of additional factors encoded on chromosomal islands. Previous reports have recognized the presence of a type III secretion system (T3SS), designated ETT2, at the glyU locus of prototype EAEC strain 042, along with possible T3SS effectors at the selC locus. The selC locus was also noted to harbour homologues of Salmonella enterica regulator HilA and of invasin from Yersinia spp., yet previous publications suggested that these loci may be silent. Here, we show that the genes of the selC locus are present inconsistently among a collection of well-characterized EAEC strains. Notably, however, there was perfect correlation between the presence of hilA-homologue eilA and predicted Yersinia invasin homologue gene eaeX. We hypothesized that if expressed, the putative gene product EilA would contribute to EAEC virulence in part by activation of the T3SS and its effectors. An eilA mutant was constructed in EAEC strain 042, and complementation was achieved by cloning the eilA gene under control of an arabinose-dependent promoter. In this system, we observed expression of at least seven genes to be affected by expression of eilA, either directly or indirectly: selC locus genes eipB, eipC, eipD, eicA and eaeX (renamed here air), as well as glyU ETT2 genes eivF and eivA. Notably, the eilA mutant was shown to be less adherent to epithelial cells in culture and to form less abundant biofilms than the isogenic parent. These effects were recapitulated in the air mutant, suggesting that the predicted outer membrane protein product of the air gene is involved as an accessory adhesin and aggregin of EAEC, coexpressed with the T3SS. Our data suggest that the T3SS of EAEC and presumed effectors located on different chromosomal islands may be coordinately activated by EilA, which also activates the genetically linked high molecular weight bacterial surface protein Air. Contributions of this new putative virulence-related regulon in EAEC may include adherence, aggregation, and as yet uncharacterized roles for the T3SS. 相似文献
11.
Terasawa S Fukuoka H Inoue Y Sagawa T Takahashi H Ishijima A 《Biophysical journal》2011,(9):2193-2200
An Escherichia coli cell transduces extracellular stimuli sensed by chemoreceptors to the state of an intracellular signal molecule, which regulates the switching of the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) and from CW back to CCW. Here, we performed high-speed imaging of flagellar motor rotation and show that the switching of two different motors on a cell is controlled coordinatedly by an intracellular signal protein, phosphorylated CheY (CheY-P). The switching is highly coordinated with a subsecond delay between motors in clear correlation with the distance of each motor from the chemoreceptor patch localized at a cell pole, which would be explained by the diffusive motion of CheY-P molecules in the cell. The coordinated switching becomes disordered by the expression of a constitutively active CheY mutant that mimics the CW-rotation stimulating function. The coordinated switching requires CheZ, which is the phosphatase for CheY-P. Our results suggest that a transient increase and decrease in the concentration of CheY-P caused by a spontaneous burst of its production by the chemoreceptor patch followed by its dephosphorylation by CheZ, which is probably a wavelike propagation in a subsecond timescale, triggers and regulates the coordinated switching of flagellar motors. 相似文献
12.
13.
CsgD, the master regulator of biofilm formation, activates the synthesis of curli fimbriae and extracellular polysaccharides in Escherichia coli. To obtain insights into its regulatory role, we have identified a total of 20 novel regulation target genes on the E. coli genome by using chromatin immunoprecipitation (ChIP)-on-chip analysis with a high-density DNA microarray. By DNase I footprinting, the consensus CsgD-binding sequence predicted from a total of 18 target sites was found to include AAAAGNG(N(2))AAAWW. After a promoter-lacZ fusion assay, the CsgD targets were classified into two groups: group I genes, such as fliE and yhbT, are repressed by CsgD, while group II genes, including yccT and adrA, are activated by CsgD. The fliE and fliEFGH operons for flagellum formation are directly repressed by CsgD, while CsgD activates the adrA gene, which encodes an enzyme for synthesis of cyclic di-GMP, a bacterial second messenger, which in turn inhibits flagellum production and rotation. Taking these findings together, we propose that the cell motility for planktonic growth is repressed by CsgD, thereby promoting the switch to biofilm formation. 相似文献
14.
Previously, we demonstrated that Bcl-2-like 10 (Bcl2l10) is associated with meiotic spindle assembly and that the gene that is most strongly down-regulated by Bcl2l10 RNAi is targeting protein for Xklp2 (Tpx2). Tpx2 is a well-known cofactor that controls the activity and localization of Aurora kinase A (Aurka) during mitotic spindle assembly. Therefore, this study was conducted (1) to identify the associations among Bcl2l10, Tpx2, and Aurka and (2) to understand how Bcl2l10 regulates meiotic spindle assembly in mouse oocytes. Bcl2l10, Tpx2, and Aurka co-localized on the meiotic spindles, and Bcl2l10 was present in the same complex with Tpx2. Tpx2 and Aurka expression decreased whereas phospho-Aurka increased in Bcl2l10 RNAi-treated oocytes. Counterbalancing changes in the levels of these 2 activators, Tpx2 and phospho-Aurka, resulted in decreased Aurka catalytic activity after Bcl2l10 RNAi treatment. Bcl2l10 RNAi decreased the expression of microtubule organizing center (MTOC)-related proteins, disturbed MTOC formation and disrupted meiotic spindle assembly. Our data demonstrate that Bcl2l10 is a binding partner of Tpx2 and a new regulator of the complex controlling the organization of microtubules and MTOC biogenesis in meiotic spindle assembly. The discovery of Bcl2l10 as a new effector of Aurka suggests that Bcl2l10 may have diverse functions in mitotic cells. 相似文献
15.
16.
《Trends in cell biology》2021,31(9):712-720
17.
The output of a rotary motor is characterized by its torque and speed. We measured the torque-speed relationship of the flagellar rotary motor of Escherichia coli by a new method. Small latex spheres were attached to flagellar stubs on cells fixed to the surface of a glass slide. The angular speeds of the spheres were monitored in a weak optical trap by back-focal-plane interferometry in solutions containing different concentrations of the viscous agent Ficoll. Plots of relative torque (viscosity x speed) versus speed were obtained over a wide dynamic range (up to speeds of approximately 300 Hz) at three different temperatures, 22.7, 17.7, and 15.8 degrees C. Results obtained earlier by electrorotation (, Biophys. J. 65:2201-2216) were confirmed. The motor operates in two dynamic regimes. At 23 degrees C, the torque is approximately constant up to a knee speed of nearly 200 Hz, and then it falls rapidly with speed to a zero-torque speed of approximately 350 Hz. In the low-speed regime, torque is insensitive to changes in temperature. In the high-speed regime, it decreases markedly at lower temperature. These results are consistent with models in which torque is generated by a powerstroke mechanism (, Biophys. J. 76:580-587). 相似文献
18.
A mutant of Escherichia coli K12 has been found to produce straight flagellar filaments. Electron micrographs of the negatively stained filaments were analysed by optical diffraction and filtering methods. The filament appears to consist of a one-start basic helix with 11 subunits in two turns and with a pitch of 26 Å. One class of the rows of subunits runs closely parallel to the filament axis. We have found that the addition of acridines to the filament suspension induces side-by side aggregation of the filaments. The optical diffraction pattern of the aggregates is similar to that of untreated filaments.Straight filaments were observed to be reconstructed on polymerization of the isolated mutant flagellin in vitro. When the straight-type flagellin copolymerizes with normal-type flagellin, the wave form of the resultant filaments is either normal or heteromorphous. The latter consists of straight and normal-type parts.These results indicate that the straight filament described here is a novel type and differs from that of a mutant of Salmonella with respect to structure (O'Brien & Bennett, 1972) and to the wave form of the copolymer product (Asakura, 1970; Asakura & Iino, 1972). 相似文献
19.
Nathan Wlodarchak 《Critical reviews in biochemistry and molecular biology》2016,51(3):162-184
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases. 相似文献
20.
FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae
下载免费PDF全文
![点击此处可从《Journal of bacteriology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Léonard S Ferooz J Haine V Danese I Fretin D Tibor A de Walque S De Bolle X Letesson JJ 《Journal of bacteriology》2007,189(1):131-141
The flagellar regulon of Brucella melitensis 16M contains 31 genes clustered in three loci on the small chromosome. These genes encode a polar sheathed flagellum that is transiently expressed during vegetative growth and required for persistent infection in a mouse model. By following the expression of three flagellar genes (fliF, flgE, and fliC, corresponding to the MS ring, hook, and filament monomer, respectively), we identified a new regulator gene, ftcR (flagellar two-component regulator). Inactivation of ftcR led to a decrease in flagellar gene expression and to impaired Brucella virulence. FtcR has a two-component response regulator domain as well a DNA binding domain and is encoded in the first flagellar locus of B. melitensis. Both the ftcR sequence and its genomic context are conserved in other related alpha-proteobacteria. During vegetative growth in rich medium, ftcR expression showed a peak during the early exponential phase that paralleled fliF gene expression. VjbR, a quorum-sensing regulator of the LuxR family, was previously found to control fliF and flgE gene expression. Here, we provide some new elements suggesting that the effect of VjbR on these flagellar genes is mediated by FtcR. We found that ftcR expression is partially under the control of VjbR and that the expression in trans of ftcR in a vjbR mutant restored the production of the hook protein (FlgE). Finally, FtcR binds directly to the upstream region of the fliF gene. Therefore, our data support the role of FtcR as a flagellar master regulator in B. melitensis and perhaps in other related alpha-proteobacteria. 相似文献