首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dong G  Callegari E  Gloeckner CJ  Ueffing M  Wang H 《Proteomics》2012,12(12):2060-2064
Huntington's disease (HD) is caused by a CAG triplet repeat expansion in exon 1 of the Huntingtin (Htt) gene, encoding an abnormal expanded polyglutamine (polyQ) tract that confers toxicity to the mutant Htt (mHtt) protein. Recent data suggest that posttranslational modifications of mHtt modulate its cytotoxicity. To further understand the cytotoxic mechanisms of mHtt, we have generated HEK293 cell models stably expressing Strep- and FLAG-tagged Htt containing either 19Q (wild-type Htt), 55Q (mHtt), or 94Q (mHtt) repeats. Following tandem affinity purification, the tagged Htt and associated proteins were subjected to tandem mass spectrometry or 2D nano-LC tandem mass spectrometry and several novel modification sites of mHtt containing 55Q or 94Q were identified. These were phosphorylation sites located at Ser431 and Ser432, and ubiquitination site located at Lys444. The two phosphorylation sites were confirmed by Western blot analysis using phosphorylation site-specific antibodies. In addition, prevention of phosphorylation at the two serine sites altered mHtt toxicity and accumulation. These modifications of mHtt may provide novel therapeutic targets for effective treatment of the disorder.  相似文献   

2.
Synapsins are synaptic vesicle-associated phosphoproteins that play a major role in the fine regulation of neurotransmitter release. In Drosophila, synapsins are required for complex behavior including learning and memory. Synapsin isoforms were immunoprecipitated from homogenates of wild-type Drosophila heads using monoclonal antibody 3C11. Synapsin null mutants (Syn(97)) served as negative controls. The eluted proteins were separated by SDS-PAGE and visualized by silver staining. Gel pieces picked from five bands specific for wild type were analyzed by nano-LC-ESI-MS/MS following multienzyme digestion (trypsin, chymotrypsin, AspN, subtilisin, pepsin, and proteinase K). The protein was unambiguously identified with high sequence coverage (90.83%). A number of sequence conflicts were observed and the N-terminal amino acid was identified as methionine rather than leucine expected from the cDNA sequence. Several peptides from the larger isoform demonstrated that the in-frame UAG stop codon at position 582 which separates two large open reading frames is read through by tRNAs for lysine. Seven novel phosphorylation sites in Drosophila synapsin were identified at Thr-86, Ser-87, Ser-464, Thr-466, Ser-538, Ser-961, and Tyr-982 and verified by phosphatase treatment. No phosphorylation was observed at the conserved PKA/CaM kinase-I/IV site (RRFS, edited to RGFS) in domain A or a potential PKA site near domain E.  相似文献   

3.
Yoder AR  Stone MD  Griffin TJ  Potter LR 《Biochemistry》2010,49(47):10137-10145
Guanylyl cyclase A and B (GC-A and GC-B) are transmembrane guanylyl cyclase receptors that mediate the physiologic effects of natriuretic peptides. Some sites of phosphorylation are known for rat GC-A and GC-B, but no phosphorylation site information is available for the human homologues. Here, we used mass spectrometry to identify phosphorylation sites in GC-A and GC-B from both species. Tryptic digests of receptors purified from HEK293 cells were separated and analyzed by nLC-MS-MS. Seven sites of phosphorylation were identified in rat GC-A (S497, T500, S502, S506, S510, T513, and S487), and all of these sites except S510 and T513 were observed in human GC-A. Six phosphorylation sites were identified in rat GC-B (S513, T516, S518, S523, S526, and T529), and all six sites were also identified in human GC-B. Five sites are identical between GC-A and GC-B. S487 in GC-A and T529 in GC-B are novel, uncharacterized sites. Substitution of alanine for S487 did not affect initial ligand-dependent GC-A activity, but a glutamate substitution reduced activity 20%. Similar levels of ANP-dependent desensitization were observed for the wild-type, S487A, and S487E forms of GC-A. Substitution of glutamate or alanine for T529 increased or decreased ligand-dependent cyclase activity of GC-B, respectively, and T529E increased cyclase activity in a GC-B mutant containing glutamates for all five previously identified sites as well. In conclusion, we identified and characterized new phosphorylation sites in GC-A and GC-B and provide the first evidence of phosphorylation sites within human guanylyl cyclases.  相似文献   

4.
5.
6.
A mass spectrometric analysis carried out to determine the peptidome of the abdominal perisympathetic organs in the locust species Locusta migratoria and Schistocerca gregaria yielded a number of predominant ion peaks, among which are Lom-PVK (AAGLFQFPRVamide) and Scg-MT-2 (TSSLFPHPRLamide). In addition, three novel peptides were identified: Lom-PVK-2 (identical in Schistocerca): GLLAFPRVamide, Lom-PVK-3: DGGEPAAPLWFGPRVamide, and Scg-PVK-3: DGAETPGAAASLWFGPRVamide. An extensive mass spectrometric study of the central nervous system showed that the periviscerokinins (-PRVamides) and Scg-MT-2 (-FXXPRLamide) are restricted to the abdominal ganglia and their perisympathetic organs, while the pyrokinins (-FXPRLamides) are present only in the brain-retrocerebral complex. Sequence comparison with the Drosophila genes supports a conserved gene structure whereby a capability-like gene encodes the periviscerokinins that are expressed in the abdominal ganglia and stored in the perisympathetic organs, while a hugin-like gene encodes the pyrokinins that are expressed in the head ganglia and stored in the retrocerebral complex.  相似文献   

7.
One of the important sites of peroxynitrite action that affects cellular function is known to be nitration of tyrosine residues. However, tryptophan residues could be another target of peroxynitrite-dependent modification of protein function, as we have shown previously using a model protein (F. Yamakura et al., J. Biochem. 138:57-69; 2005). Here, we report the identification of several proteins that allowed us to determine the position of nitrotryptophan in their amino acid sequences in a more complex system. We modified lysates from PC12 cells with and without nerve growth factor (NGF) by treatment with peroxynitrite (0.98 or 4.9 mM). Western blot analyses using anti-6-nitrotryptophan antibody showed several immunoreactive bands and spots, which were subsequently subjected to trypsin digestion and LC-ESI-MS-MS analysis. We identified several tryptic peptides including nitrotryptophan residues, which were derived from L-lactate dehydrogenase A, malate dehydrogenase 1, M2 pyruvate kinase, and heat-shock protein 90 α, in peroxynitrite-treated lysates from PC12 cells, and l-lactate dehydrogenase A, malate dehydrogenase 1, transaldorase, and lactoylglutathione lyase, in peroxynitrite-treated lysates from NGF/PC12 cells. The molar ratio of 3-nitrotyrosine to 6-nitrotryptophan in protease-digested PC12 cell lysates treated with peroxynitrite was determined to be 5.8 to 1 by using an HPLC-CoulArray system. This is the first report to identify several specific sites of nitrated tryptophan on proteins in a complex system treated with peroxynitrite and to compare the susceptibility of nitration between tryptophan and tyrosine residues of the proteins.  相似文献   

8.
The covalent attachment of ubiquitin to proteins regulates numerous processes in eukaryotic cells. Here we report the identification of 753 unique lysine ubiquitylation sites on 471 proteins using higher-energy collisional dissociation on the LTQ Orbitrap Velos. In total 5756 putative ubiquitin substrates were identified. Lysine residues targeted by the ubiquitin-ligase system show no unique sequence feature. Surface accessible lysine residues located in ordered secondary regions, surrounded by smaller and positively charged amino acids are preferred sites of ubiquitylation. Lysine ubiquitylation shows promiscuity at the site level, as evidenced by low evolutionary conservation of ubiquitylation sites across eukaryotic species. Among lysine modifications a significant overlap (20%) between ubiquitylation and acetylation at site level highlights extensive competitive crosstalk among these modifications. This site-specific crosstalk is not prevalent among cell cycle ubiquitylations. Between SUMOylation and ubiquitylation the preferred interaction is through mixed-chain conjugation. Overall these data provide novel insights into the site-specific selection and regulatory function of lysine ubiquitylation.  相似文献   

9.
Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide.  相似文献   

10.
The lysine residues of rat heme oxygenase-1 (HO-1) were acetylated by acetic anhydride in the absence and presence of NADPH-cytochrome P450 reductase (CPR) or biliverdin reductase (BVR). Nine acetylated peptides were identified by MALDI-TOF mass spectrometry in the tryptic fragments obtained from HO-1 acetylated without the reductases (referred to as the fully acetylated HO-1). The presence of CPR prevented HO-1 from acetylation of lysine residues, Lys-149 and Lys-153, located in the F-helix. The heme degradation activity of the fully acetylated HO-1 in the NADPH/CPR-supported system was significantly reduced, whereas almost no inactivation was detected in HO-1 in the presence of CPR, which prevented acetylation of Lys-149 and Lys-153. On the other hand, the presence of BVR showed no protective effect on the acetylation of HO-1. The interaction of HO-1 with CPR or BVR is discussed based on the acetylation pattern and on molecular modeling.  相似文献   

11.
Mitochondrial Complex I (NADH:ubiquinone oxidoreductase) consists of at least 46 subunits. Phosphorylation of the 42-kDa subunit NDUFA10 was recently reported using a novel phosphoprotein stain [Schulenberg et al. (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278, 27251]. Two smaller Complex I phosphoproteins, ESSS and MWFE, and their sites of modification, have since been determined [Chen et al. (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 279, 26036]. Here we identify the site of phosphorylation in NDUFA10 from bovine heart mitochondria by tandem mass spectrometry. A single phosphopeptide spanning residues 47-60 was identified and confirmed by synthesis to be (47)LITVDGNICSGKpSK(60), establishing serine-59 as the site of phosphorylation.  相似文献   

12.
Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.  相似文献   

13.
Transthyretin, one of the major blood proteins, displays a variety of posttranslational modifications, including those related to the development of grave diseases, such as Alzheimer’s disease, and familial amyloid polyneuropathy. A combined analytical technique based on the use of two mass spectrometric approaches (bottom-up and top-down) has been developed in the present study to determine the role of the modified forms of transthyretin in the progression of Alzheimer’s disease. The high efficiency of this technique has been demonstrated for ten serum samples obtained from patients diagnosed with Alzheimer’s disease and healthy volunteers.  相似文献   

14.
The occurrence of 5-methoxytryptophol (5-MTL) in the quail retina was investigated by capillary column gas chromatography/mass spectrometry/selected ion monitoring using a deuterated internal standard. Based on ion intensity ratios in the mass spectra of pentafluoropropionyl and heptafluorobutyryl derivatives of 5-MTL and deuterated 5-MTL, 5-MTL was unequivocally identified in the quail retina. Similar to the circadian rhythm of retinal melatonin, retinal 5-MTL also exhibited a diurnal variation with high levels at mid-dark. However, no significant correlation between the diurnal levels of 5-MTL and melatonin was observed in the quail retina at mid-light or mid-dark.  相似文献   

15.
16.
The trisaccharide present in the kaempferol 3-triglucoside-7-rhamnoside of potato seed has been identified by hydrolytic experiments and by MS measurements on the perdeuteriomethylated glycoside as sophorotriose (glucosyl-β1 → 2-glucosyl-β1 → 2-glucose).  相似文献   

17.
Four different transglutaminase-modified forms of a protein secreted by the rat seminal vesicles (SV-IV) were synthesized in vitro and characterized. FAB maps of both the native protein and its derivatives, produced by the purified guinea pig liver enzyme in the presence or absence of the polyamine spermidine, were obtained by mass spectrometric analysis after proteolytic digestions. Two differently derivatized SV-IV molecular forms, both possessing only one glutamine residue out of two (Gln-86) cross-linked to endogenous lysine residues, were produced when spermidine was omitted from the reaction mixture: (i) an insoluble homopolymer in which Lys-2, -4, -59, -78, -79, and -80 were involved in the linkage; (ii) a soluble form of the protein with an intramolecular epsilon-(gamma-glutamyl)lysine isopeptide bond between Gln-86 and Lys-59. Two species of SV-IV-spermidine adducts were obtained when the protein was treated with transglutaminase in the presence of high concentrations of the polyamine. The first one was characterized by one spermidine molecule covalently bound to Gln-86 and the second one by two spermidine molecules respectively bound to Gln-9 and Gln-86.  相似文献   

18.
We performed the matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry (MALDI-TOF) analysis of the peptides entering into the composition of not yet explored bioregulators derived from the extracellular matrix of the tissues of the various organs of the mammals, and also plants and fungi. The study included 15 different mammalian tissues, 13 species of plants, and 2 species of fungi. Exploring the bioregulators derived from eye tissues, we demonstrated that their composition includes peptide components with the same values of the molecular weight. The composition of the bioregulators derived from the tissues of various organs of mammals or different species of plants and fungi includes the peptides with different values of molecular weight. Obtained data indicate the growing evidence of the assumptions about the major function of the bioregulators of this group—their involvement in the regulation of tissue-organ homeostasis in the biological systems.  相似文献   

19.
Electrospray ionization mass spectrometry, a leading method for the quantification of biomolecules, is useful for the analysis of posttranslational modifications of proteins. Here we describe a mass spectrometric approach for determining levels of acetylation at individual lysine residues within the amino-terminal tail of histone H4. Because of the high density of acetylatable lysine residues within this short span of amino acids, collision-induced dissociation tandem mass spectrometry was required. In addition, it was necessary to develop an algorithm to determine the fraction of acetylation at specific lysine residues from fragment ions containing more than one lysine residue. This is the first report of direct measurement of endogeneous levels of acetylation at individual lysine residues within the amino-terminal tail of yeast histone H4 and is the first use of tandem mass spectrometry for quantification of peptides containing multiple sites of modification.  相似文献   

20.
Electrophoretic mobility shift assays (EMSA) are commonly employed for the analysis of nucleic acid/ protein interactions with a native gel system. Here, we report a method to identify RNA binding proteins from a dried EMSA gel by mass spectrometry following autoradiography. Compared to wet gel exposure, our approach resulted in an improved protein identification sensitivity and RNA/protein complex isolation accuracy. The method described here is useful for the large scale characterization of RNA- or DNA-protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号